Skip to main content

Piezocomposite Transducers for Adaptive Structures

  • Chapter
  • First Online:
Adaptive, tolerant and efficient composite structures

Part of the book series: Research Topics in Aerospace ((RTA))

Abstract

Low profile actuators are a basic technology for smart structures. Bonded on surfaces or embedded in composite structures they work as actuators and sensors to control the structural behaviour. The simplest types are based on thin piezoceramic plates (typical thickness 200 μm) provided with surface electrodes to operate in the lateral d31-mode. This type of actuator is able to generate strains of 500 μm/m. To achieve higher deformations it is necessary to use the d33-effect. The difficulty is to generate the necessary in-plane electrical field. A common solution is the use of interdigitated electrodes consisting of two comb like electrodes with opposite polarity that are placed on the surface of the piezoceramic material. Known as Active Fiber Composites (AFC’s) or Macro Fiber Composites (MFC’s) these kinds of actuators can produce strains of 1,600 μm/m. The drawback of interdigitated surface electrodes is a very high driving voltage of up to 1,500 V. A promising concept to overcome this drawback is presented. It is based on the use of multilayer technology for low profile actuators. Within these actuators the electrodes are incorporated in the piezoelectric material during the sintering process as very thin layers with little impact on the actuator stiffness. This allows a significant reduction of the electrode distance and therefore also a reduction of the driving voltage. To utilize the multilayer technology for low profile actuators, standard multilayer stacks are diced into thin plates. In this configuration the electrodes are not only on the surface of the piezoelectric material but cover the whole cross section. In a second step these plates are embedded into a polymer to build a piezo-composite. Without the mechanical stabilization of the surrounding polymer the handling of the fragile multilayer plate would be extremely difficult or nearly impossible. Several prototypes have been build and achieved an active strain of 1,200 μm/m at a voltage of 200 V. Using other materials an active strain of 1,600 μm/m is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjeddou, A., Deu, J.F.: Piezoelectric transverse shear actuation and sensing of plates. J. Intell. Mater. Syst. Struct. 12(7), 435–449 (2001)

    Google Scholar 

  2. Wierach, P., Rienecker, R.: An experimental study on the use of piezoelectric shear actuators for smart structures. In: 18th international conference on adaptive structures and technologies, Ottawa, Canada (2007)

    Google Scholar 

  3. Lazarus, K. B.: Packaged strain actuator. United States Patent 5,656,882 (1997)

    Google Scholar 

  4. www.mide.com. Accessed 12 Dec 2011

  5. Horner, G.: Piezoelectric composite device and method for making same. United States Patent Application 20020038990 (2002)

    Google Scholar 

  6. Horner, G.: Smart actuator research. Adaptronic Congress, Berlin (2001)

    Google Scholar 

  7. Wierach, P.: Entwicklung multifunktionaler Werkstoffsysteme mit piezokeramischen Folien im Leitprojekt Adaptronik. Adaptronic-Congress, Wolfsburg (2003)

    Google Scholar 

  8. Wierach, P.: Elektromechanisches Funktionsmodul. German Patent DE 10051784 C1 (2002)

    Google Scholar 

  9. http://www.invent-gmbh.de/s08x_duraact.htm. Accessed 12 Dec 2011

  10. http://www.physikinstrumente.de/de/pdf/extra/PI_Katalog_Piezokomposite_Flaechenwandler_DuraAct_Brosch.pdf. Accessed 12 Dec 2011

  11. Master, B.P.: Laser machining of electroactive ceramics. United States Patent 6,337,465 (1993)

    Google Scholar 

  12. Bent, A.A.: Anisotropic actuation with piezoelectric fiber composites. J. Intell. Mater. Syst. Struct. 6(3), 338–349 (1995)

    Article  Google Scholar 

  13. Bent, A.A.: Piezoelectric fiber composites with interdigitated electrodes. J. Intell. Mater. Syst. Struct. 8(11), 903–919 (1997)

    Article  Google Scholar 

  14. Gentilman, R.: Enhanced performance active fiber composites. In: SPIE 10th symposium on smart structures and materials, San Diego, USA (2003)

    Google Scholar 

  15. http://www.matsysinc.com/products/transducers/. Accessed 12 Dec 2011

  16. www.advancedcerametrics.com. Accessed 12 Dec 2011

  17. Lammer, H.: Einsatz adaptiver Materialien und deren Wirkungen bei Sportgeräten an Beispiel Tennisschläger Is18 sowie Ski Ic 300 der Fa HEAD Sport. Adaptronic congress, Wolsburg, Germany (2003)

    Google Scholar 

  18. Wilkie, W.K.: Low-cost piezocomposite actuator for structural control applications. In: SPIE 7th international symposium on smart structures and meterials, Newport Beach, California, USA (2000)

    Google Scholar 

  19. Wilkie, W.K.: Free strain electromechanical characterization of the nasa macrofiber composite piezoceramic actuator. In: SPIE 8th symposium on smart structures and materials, Newport Beach, California, USA (2001)

    Google Scholar 

  20. Wilkie, W.K.: Method of fabricating a piezoelectric composite apparatus. United States Patent 6,629,341 (2003)

    Google Scholar 

  21. www.smart-material.com. Accessed 12 Dec 2011

  22. Cannon, B.J.: Feasibility study of microfabrication by coextrusion of hollow fibres for active composites. J. Intell. Mater. Syst. Struct. 11, 659–670 (2000)

    Google Scholar 

  23. Wierach, P.: Smart composites based on piezoceramic tubes. In: SPIE 9th symposium on smart structures and materials, San Diego, California, USA (2002)

    Google Scholar 

  24. Gesang, T.: Herstellung und Eigenschaften aktorischer Fasermodule. Adaptronic Congress, Wolfsburg, Germany (2003)

    Google Scholar 

  25. Schoenecker ,A., Roedig, T., Gebhardt, S., Keitel, U., Daue, T.: Piezocomposite transducers for smart structure applications. In: SPIE 12th symposium on smart structures and materials, San Diego, USA (2005)

    Google Scholar 

  26. Sigle, C.H., Kleineberg, M., Pabsch, A., Herrmann, A.S.: Das DP-RTM-Verfahren, eine Fertigungstechnologie zur wirtschaftlichen Herstellung hochwertiger Faserverbundbauteile. In: Brökel, K. (ed) 2. Workshop Konstruktionstechnik–Innovation–Konstruktion–Berechnung, pp. 403–414. Shaker Verlag, Herzogenrath (1998)

    Google Scholar 

  27. Wierach, P.: Entwicklung von Piezokompositen für Adaptive Systeme. Dissertation, Technische Universität Braunschweig (2009)

    Google Scholar 

  28. Wierach, P., Monner, H.P., Schönecker, A., Dürr, J.K.: Application specific design of adaptive structures with piezoceramic patch actuators. In: SPIE’s 9th annual international symposium on smart structures and materials, San Diego, California, USA (2002)

    Google Scholar 

  29. Wierach, P.: Piezokeramischer Flächenaktuator und Verfahren zur Herstellung eines solchen. Patent Application DE 10 2006 0404 316 A1 (2006)

    Google Scholar 

  30. Wierach, P.: Low profile piezo actuators based on multilayer technology. In: 17th international conference on adaptive structures and technologies, Taipei, Taiwan (2006)

    Google Scholar 

  31. Grohmann, B., Maucher, C., Jänker, P., Wierach, P.: Embedded piezoceramic actuators for smart helicopter rotor blade. In: 16th AIAA/ASME/AHS adaptive structures conference, Schaumburg, Illinois, USA (2008)

    Google Scholar 

  32. Beutel, T., Leester-Schädel, M., Wierach, P., Sinapius, M., Büttgenbach, S.: Novel pressure sensor for aerospace purposes. Sens. Transducers J. 115(4), 11–19 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wierach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wierach, P. (2013). Piezocomposite Transducers for Adaptive Structures. In: Wiedemann, M., Sinapius, M. (eds) Adaptive, tolerant and efficient composite structures. Research Topics in Aerospace. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29190-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29190-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29189-0

  • Online ISBN: 978-3-642-29190-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics