Continuous Preforming with Variable Web Height Adjustment

  • Henrik Borgwardt
Part of the Research Topics in Aerospace book series (RTA)


Preforming is required for complex shaped profiles manufactured in liquid composite moulding (LCM) processes. The stacking is made of dry fiber fabrics, which are infiltrated in a later process step. The complete stacking is called preform. The fixing of the textile layers can be realised through stitching or binder technology. The main disadvantage is the immense rate of manual work within the preform process. In consequence, the manufacturing is costly in terms of time and high effort for quality control. Automated preforming can reduce the costs by increasing the output and production rate while minimising waste. Preform profiles with variable outlines and non-extrudable sections are of particular interest for the aviation and automotive industry. The DLR Institute of Composite Structures and Adaptive Systems has developed an innovative device to overcome the previous limitations and to fulfil the industrial demands.


Fiber Reinforce Polymer Carbon Fiber Reinforce Polymer Resin Transfer Moulding Reduce Cycle Time Textile Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ACARE: Addendum to the strategic research agenda, Advisory council for aeronautics research in Europe (2008)Google Scholar
  2. 2.
    Potluri, P., Atkinson, J.: Automated manufacture of composites: handling, measurement of properties and lay-up simulations. Compos. Part A 34 493–501 (2003)Google Scholar
  3. 3.
    Friedrich, H.E., Kopp, G.: Leichtbau und Modulbauweisen für zukünftige Fahr zeugkonzepte. In: Stuttgarter Symposium (2007)Google Scholar
  4. 4.
    Cinquin, J., Voillaume, H., Stroehlein, T., Ruzek, R.: Modular joining of B-stage cured composite element with forming process and film adhesive for structural application, In: Proceedings of the ICCM-17 17th International Conference on Composite Materials, 27–31 July, Edinburgh, UK, (2009)Google Scholar
  5. 5.
    Brötje-Automation: Lösungen für anspruchsvolle Faserverbundteile., Kunststoffe; 5/2010; München, 2010, Carl Hanser Verlag (2010)Google Scholar
  6. 6.
    Kirst, P.: Untersuchungen zur Oberflächenwelligkeit von stringerversteiften CFK-Strukturen für Flugzeugflügel Oberschalen in Liquid Composite Moulding Verfahren (LCM). DLR, Braunschweig (2011)Google Scholar
  7. 7.
    Borgwardt, H., Ströhlein, T., Krzywinski, S.: Entwicklung einer Anlage zur kontinuierlichen Fertigung von Preformprofilen mit variabler Steghöhe aus Faserverbundwerkstoffen, Interner Bericht, IB131-2009/16, DLR, Braunschweig (2009)Google Scholar
  8. 8.
    Mills, A.: Automation of Carbon fibre preform manufacture for affordable aerospace appltications. Compos. Part A 32, 955–962, (2001)Google Scholar
  9. 9.
    Benkowsky, G.: Induktionserwärmung: Härten, Glühen, Schmelzen, Löten, Schweißen. (5. Auflage) Berlin, (1990)Google Scholar
  10. 10.
    Bengtsson, P.: Rapid automated induction lamination (RAIL) of carbon fiber weave and thermoplastic film. Lulea University of Technology, Lulea (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Composite Structures and Adaptive SystemsDeutsches Zentrum für Luft- und RaumfahrtBraunschweigGermany

Personalised recommendations