Payload Adapter Made from Fiber-Metal-Laminate Struts

  • Boris Kolesnikov
  • Daniel Stefaniak
  • Johannes Wölper
  • Christian Hühne
Part of the Research Topics in Aerospace book series (RTA)


In comparison to other transport systems, launch vehicles are characterized by relatively light but extremely valuable payloads. The launcher’s upper stage structures, e.g. payload adapter and fairing, offer the highest weight saving potential. An effective weight reduction can only be achieved by the combined utilization of high performance materials and adapted construction methods. To improve the structures damage tolerance a new hybrid lay-up has been developed, which combines the properties of both, steel and carbon fiber reinforced plastics (CFRP). This chapter presents a preliminary design of a payload adapter as a framework, which is based on the high performance material properties of unidirectional CFRP-steel-laminates, offering a considerable weight saving potential.


Carbon Fiber Reinforce Plastic Damage Tolerance Glass Fiber Reinforce Plastic Radial Load Global Buckling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gómez-Molinero, V.: History and lessons learnt from the development of mechanical systems for different launch vehicles. In: 1st CEAS European Air and Space Conference, CEAS-2007-303Google Scholar
  2. 2.
    Vasiliev, V., Barynin, V., Rasin, A., Petrokovskii, S., Khalimanovich, V.: Anisogrid composite lattice structures—development and space applicatioins. In: 11th European Conference on “Spacecraft Structures, Materials and Mechanical Testing”, Toulouse, France (2009)Google Scholar
  3. 3.
    Vasiliev, V., Barynin, V., Rasin, A.: Anisogrid lattice structures—survey of development and application. Compos. Struct. 54, 361–370 (2001)CrossRefGoogle Scholar
  4. 4.
    Rasin, A., Vasiliev, V.: Development of composite anisogrid spacecraft attach fitting. In: 11th European Conference on Composite Materials, Rhodos, Greece (2004)Google Scholar
  5. 5.
    Vasiliev, V., Rasin, A.: Anisogrid composite lattice structures for spacecraft and aircraft application. Compos. Struct. 76, 182–189 (2006)CrossRefGoogle Scholar
  6. 6.
    Nadler, M.A., Yoshino, S.Y., Darms, F.J.: Boron/epoxy support strut for non-integral cryogenic tankage. In: Materials and Processes, 15th SAMPE-Symposium, Los Angeles (1969)Google Scholar
  7. 7.
    Vlot, A., Gunnink, J.G.: Fiber metal laminates an introduction. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  8. 8.
    Fink, A.: Local metal hybridization increasing the efficiency of highly loaded composite bolted joints. Dissertation, University Braunschweig, Germany (2010)Google Scholar
  9. 9.
    Worobeij, W.W., Sirotkin, O.S.: Joints for FRP constructions’ (russian). Maschinostroenie, Leningrad (1985)Google Scholar
  10. 10.
    Kolesnikov, B., Herbeck, L., Fink, A.: Fortschrittliche Verbindungstechnikenvon Faserverbunden. In: DGLR-congress, Dresden, Germany, vol II, September, pp. 1419–1428 (2004)Google Scholar
  11. 11.
    Kolesnikov, B., Herbeck, L., Fink, A.: CFRP/titanium hybrid material for improving composite bolted joints. Compos. Struct. 83, 368–380 (2008)CrossRefGoogle Scholar
  12. 12.
    Kolesnikov, B., Wilmes, H., Herrmann, A.S., Pabsch, A.: Verbundmaterial mit einem verstärkten Verbindungsbereich. European patent EP 1 082 217 B1, 2002Google Scholar
  13. 13.
    Westre, W.N.: u. a. “Titan-Polymer hybrid Laminate”. Patent DE 697 34 616 T2, 2005Google Scholar
  14. 14.
    Kolesnikov, B., Fink, A., Hühne, C., Stefaniak, D., Borgwardt, H.: Strukturelement aus einem Hybridlaminat. patent application DE 10 2010 035 324.8-16, 2010Google Scholar
  15. 15.
    Balabuch, L.I., Alfutov, N.A., Usükin, W.I.: ‘Structural mechanics for rockets’ (russian). Wysschaja schkola, Moskau (1984)Google Scholar
  16. 16.
    Pisarenko, G.S., Yakowlew, A.P., Matweew, W.W.: ‘Reference book for strength of materials’ (russian). Naukova Dumka, Kiev (1988)Google Scholar
  17. 17.
    Vasiliev, V.V.: Mechanics of Composite Structures. Taylor & Francis, London (1993)Google Scholar
  18. 18.
    Structural Matireals Handbook, Vol. 1—Polymer Composites: Section VI—Design of Structures, Chapter 25, Design of Struts, ESA PSS-03-203 Issue 1. Noordwijk, The Netherlands (1994) Google Scholar
  19. 19.
    Beloserov, L.G., Kireev, B.A.: FRP under mechanical and thermal load (russian). Phismatgis, Moskau (2003)Google Scholar
  20. 20.
    Roark, R.J.: Formulas for Stress and Strain, 3rd edn. Mcgraw-Hill book company, Inc, New York (1954)Google Scholar
  21. 21.
    Gómez-Molinero, V.: General view of the spacesystem structures evolution and furure chellenges, European Conference on Spacecraft Structures. In: Materials & Mechanical Testing 2005 Noordwijk, The Netherlands, 10–12 May 2005Google Scholar
  22. 22.
    Stefaniak, D., Fink, A., Kolesnikov, B., Hühne, C.: Improving the mechanical properties of CFRP by metal-hybridization. In: International Conference on Composite Structures ICCS16, Porto, June 2011Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Boris Kolesnikov
    • 1
  • Daniel Stefaniak
    • 1
  • Johannes Wölper
    • 1
  • Christian Hühne
    • 1
  1. 1.Institute of Composite Structures and Adaptive Systems, Composite DesignDeutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Center)BraunschweigGermany

Personalised recommendations