• Peter Wierach
Part of the Research Topics in Aerospace book series (RTA)


New materials with superior properties are the basis to exceed existing technological barriers and to explore new fields of application. Especially composites as multiphase materials offer the possibility to influence their properties or to add even new functionalities by a proper choice and combination of the different phases. In this context it is of particular importance to understand the interactions between the different material phases. This includes for example the effect of nanoscale additives in resins as well as the effect of microscopic manufacturing defects, like pores, on the macroscopic material properties. A systematic material design is only possible if cause and effect on the different material scales is well understood. Nanotechnology gives the opportunity to manipulate the structure of materials on a level, allowing to realize properties and functionalities that can’t be achieved with conventional methods. Beside the improvement of mechanical, thermal, optical and electrical properties, the incorporation of new “smart materials” on a technical relevant scale is in the focus of our research.


Smart Material Smart Structure Nanoscaled Particle Neat Resin Resin Pocket 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lu, G., Kaxiras, E.: Overview of multiscale simulations of materials. Handb. Theor. Comput. Nanotechnol. 10, 1–33 (2005)Google Scholar
  2. 2.
    Herbeck, L., Kleineberg, M.: Single line injection–a successful liquid resin infusion technology for commercial aircraft applications. In: International symposium on composite manufacturing for aircraft structures, Flevoland, Netherlands (2002)Google Scholar
  3. 3.
    Arlt, C.: Wirkungsweisen nanoskaliger Böhmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung. Dissertation, Otto von Guericke Universität Magdeburg (2011)Google Scholar
  4. 4.
    Dürr, J.K.: Integration von Piezokeramiken in Faserverbundstrukturen. Dissertation, Universität Stuttgart (2006)Google Scholar
  5. 5.
    Shukla, D.R., Vizzini, A.J.: Interlacing for improved performance of laminates with embedded devices. J. Smart Mater. Struct. 6, 225–229 (1996)CrossRefGoogle Scholar
  6. 6.
    Wierach, P.: Entwicklung multifunktionaler Werkstoffsysteme mit piezokeramischen Folien im Leitprojekt Adaptronik. Adaptronic Congress, Wolfsburg, Germany (2003)Google Scholar
  7. 7.
    Kubicka, M.: Untersuchung von magnetostriktiven Partikeln zur Detektion von Eigenspannungen in CFK-Polymermatrices. Diplomarbeit, Universität Magdeburg (2011) Google Scholar
  8. 8.
    Kubicka, M., Mahrholz, T., Sinapius, M.: Magnetostrictive properties of epoxy resins modified with Terfenol-D particles for detection of internal stress in CFRP—Part 1: materials and Processes. J. Mater. Sci. submitted (2012) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.DLR, Institute of Composite Structures and Adaptive SystemsBraunschweigGermany

Personalised recommendations