Advertisement

Boom Concept for Gossamer Deployable Space Structures

  • Marco Straubel
  • Michael Sinapius
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

Deployable structures are necessary to realize large but weight-efficient space systems. DLR provides a deployable mast that can be used either at once to realize e.g. long dipole antennas of some ten meters or to setup structures that use this mast as basic building block structure. This section shall, therefore, enable a basic insight on the concept and of the resulting challenges. Moreover, a deployment test series under weightlessness is presented and evaluated to show possible concepts of deployment control and demonstrate the potentials.

Keywords

Solar Array Space Debris Solar Sail Deployment Process Deployable Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jenkins, C.H.: Recent advances in gossamer spacecraft. In: AIAA, 2006, vol. 212, Progress in Astronautics and Aeronautics Series, 212, iSBN-10: 1-56347-777-7 ISBN-13: 978-1-56347-777-5Google Scholar
  2. 2.
    Footdale, J.N., Murphey, T.W.: Deployable structures with quadrilateral reticulations. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, USA, 4–7 May 2009Google Scholar
  3. 3.
    Allred, R., Hoyt, A., McElroy P.: Uv rigidizable carbon-reinforced isogrid inflatable booms. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, USA, 22–25 April 2002Google Scholar
  4. 4.
    Sandy, C.: Next generation space telescope inflatable sunshield development. In: 2000 IEEE Aerospace Conference Proceedings, vol. 6, Proceedings Paper, pp. 505–519, 18–25 Mar 2000Google Scholar
  5. 5.
    Fang, H., Lou, M., Huang, J.: Design and development of an inflatable relectarry antenna. JPL, Technical Report, 15 May 2002, IPN Progress Report 42–149Google Scholar
  6. 6.
    ECSS, ECSS-E-ST-33-01C—Mechnisms, European Cooperation for Space Standardization Std., Rev. ECSS-E-ST-33-01C, 06 Mar 2009Google Scholar
  7. 7.
    Straubel, M., Sickinger, C., Langlois, S.: Trade-off on large deployable membrane antennas. In: 30th ESA Antenna Workshop, Noordwijk, The Netherlands, 27–30 May 2008Google Scholar
  8. 8.
    Sickinger, C.: Verifikation entfaltbarer composite-booms für gossamer-raumfahrtsysteme. Dissertation, Technische Universität Carolo-Wilhemina zu Braunschweig, publisher: Shaker, ISBN: 978-3-8322-8049-9, (Mar 2009)Google Scholar
  9. 9.
    Sickinger, C.: Analysis of thermally induced disturbances of a gossamer composite boom. In: Boom 4th European Workshop on Inflatable Space Structures, 16–18 June 2008Google Scholar
  10. 10.
    Sickinger, C., Herbeck, L., Ströhlein, T., Torrez-Torres, J.: Lightweight deployable booms: Design, manufacture, verification, and smart materials application. In: 55th International Astronautical Congress, IAF/IAA/IISL, Ed., 04–08 Oct 2004Google Scholar
  11. 11.
    Sickinger, C., Herbeck, L., Ströhlein, T., Torrez-Torres, J.: Deployable structurs in space. In: 12th National SAMPE-Symposium Faserverbundstrukturen, Braunschweig, 2–3 Mar 2006Google Scholar
  12. 12.
    Sickinger, C., Assing, H., Köke, H., Straubel, M.: Verification methology for self-deploying support frames, In: 1st CEAS European Air and Space Conference, Berlin, Germany, 11–13 Sep 2007Google Scholar
  13. 13.
    Straubel, M., Sinapius, M., Langlois, S.: On-ground rigidised, deployable masts for large gossamer space structures. In: European Conference on Spacecraft Structures, Materials & Mechanical Testing, Toulouse, France, 15–17 Sep 2009Google Scholar
  14. 14.
    Geppert, U., Biering, B., Lura, F., Block J., Straubel, M., Reinhard, R.: The 3-step dlr-esa gossamer road to solar sailing. Advances in Space Research, vol. In Press, Corrected Proof, 2010Google Scholar
  15. 15.
    Bock, M.: Synchronisation und Aufbereitung von Kamerabildern und Messdaten des CFK-Mast-Entfaltungsversuchs unter Schwerelosigkeit diploma thesis—Otto-von-Guericke Universität Magdeburg, 02 Aug 2009Google Scholar
  16. 16.
    Hillebrandt, M.: Experimentelle Verifikation von Low-Cost-CfK-Booms (engl. experimental verification of low-cost-CFRP-booms), Aug 2009, student research project, supervised by DLR and University of BraunschweigGoogle Scholar
  17. 17.
    Leipold, M., Runge, H., Sickinger, C.: Large SAR membrane antennas with lightweight deployable booms. In: 28th ESA Antenna Workshop on Space Antenna Systems and Technologies. DCR Institute of Composite Structures and Adaptive Systems and Kayser-Threde (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Composite Structures and Adaptive Systems, Composite DesignDeutsches Zentrum für Luft- und Raumfahrt e.V. (German Aerospace Center)BraunschweigGermany

Personalised recommendations