Compliant Aggregation of Functionalities

  • Christian Hühne
  • Erik Kappel
  • Daniel Stefaniak
Part of the Research Topics in Aerospace book series (RTA)


The aggregation of functionalities offers additional benefits to the customers such as reduced weight, reduced life cycle costs and an increased range of applications. For a compliant aggregation of functionalities according to given requirements clear instructions on how to conduct lightweight design are essential, but often not available today. High performance lightweight structures are made from carbon fiber reinforced plastics increasingly. Due to the specific composite manufacturing process four different levels of function-integration are conceivable. The pre-fabrics or components of the composite can include smart materials with enhanced functionalities. The structure design can better exploit the composite potentials of anisotropic material properties. Passive components integrated into the structure provide additional functionalities as for example de-icing and lighting protection. In adaptive systems active elements significantly improves the ability of the structure to adapt changing environmental conditions. The development of the potentials resulting from the compliant aggregation of functionalities is presented in this chapter.


Piezoelectric Actuator Carbon Fiber Reinforce Plastic Aerodynamic Load Fiber Reinforce Plastic Fiber Metal Laminate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roth, K.: Konstruieren mit Konstruktionskatalogen: Band 1: Konstruktionslehre. 3. Auflage, erweitert und neu gestaltet. Springer, Berlin (2000) ISBN 3-540-67142Google Scholar
  2. 2.
    Fritsch, M.: Zur integralen Funktionsausnutzung von Bauelementen. Feingerätetechnik Technisch-wissenschaftliche Zeitschrift für Feinmechanik, Optik und Meßtechnik 16, Heft 9 (1967) ISSN 0014-9683, S.402-404Google Scholar
  3. 3.
    Arlt, C.: Wirkungsweisen nanoskaliger Böhmite in einem Polymer und seinem Kohlenstofffaserverbund unter Druckbelastung, Dissertation, Magdeburg (2011)Google Scholar
  4. 4.
    Vlot, A., Gunnink, J.G.: Fiber Metal Laminates an Introduction. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  5. 5.
    Wu, G., Wang, J.M.: The mechanical behavior of glare laminates for aircraft structures. JOM J Miner. Met. Mater. Soc. 57(1), 72–79 (2005) DOI:  10.1007/s11837-005-0067-4
  6. 6.
    Stefaniak, D., Fink, A., Kolesnikov, B., Hühne C.: Improving the mechanical properties of CFRP by metal-hybridization. In: International Conference on Composite Structures ICCS16, Porto, June 2011Google Scholar
  7. 7.
    Kolesnikov, B., Herbeck, L., Fink, A.: CFRP/titanium hybrid material for improving composite bolted joints. Compos. Struct. 83, 368–380 (2008)CrossRefGoogle Scholar
  8. 8.
    Fink, A., Camanho, P.P., Andrés, J.M., Pfeiffer, E., Obst, A.: Hybrid CFRP/titanium bolted joints: Performance assessment and application to a spacecraft payload adaptor. Compos. Sci. Technol. 70, 305–317 (2010)CrossRefGoogle Scholar
  9. 9.
    Spröwitz, T., Hühne, C., Kappel, E.: Thermal Aspects for Composite Structures—From Manufacturing to In-Service Predictions. In: CEAS 2009, 26–29 Oct 2009, Manchester (2009)Google Scholar
  10. 10.
    Kappel, E., Stefaniak, D., Hühne, C.: A semi-analytical simulation strategy and its application to warpage of autoclave-processed CFRP parts. Compos. Part A Appl. Sci. Manuf. 42(12), 1985–1994 (2011)CrossRefGoogle Scholar
  11. 11.
    Kappel, E., Stefaniak, D., Hühne, C.: Kompensation faserverbundspezifischer Fertigungsdeformationen im Werkzeug—Ein semi-analytischer Ansatz. In: NAFEMS Online Magazin 03/2011, Ausgabe 20Google Scholar
  12. 12.
    Jürgenhake, C.: Strukturintegrierte Leiterbahnen, Diplomarbeit, IB 131-2009/33Google Scholar
  13. 13.
    Franken, H.: Entwicklung eines Faserverbundkonzeptes einer strukturintegrierten Widerstandsflächenheizung für Enteisungssysteme und beheizbare Werkzeuge. IB 131-2004/08, DLR Braunschweig (2004)Google Scholar
  14. 14.
    Audi MediaInfo. Tomorrow’s lighting technologies, Press Release
  15. 15.
    Monner, H.P., Opitz, S., Riemenschneider, J., Wierach, P.: Evolution of Active Twist Rotor Designs at DLR. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials, Schaumburg, IL, 7–10 April 2008Google Scholar
  16. 16.
    Monner, H.P., Sinapius, M., Opitz, S.: DLR’s morphing activities within the European network. In: AVT—Symposium on Morphing Vehicles, Evora, Portugal, pp. 1–31 (2009)Google Scholar
  17. 17.
    Monner, H.P., Kintscher, M., Lorkowski, T., Storm, S.: Design of a smart droop nose as leading edge high lift system for transportation aircrafts. In: AIAA Conference, Palm Springs, USA (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Hühne
    • 1
  • Erik Kappel
    • 1
  • Daniel Stefaniak
    • 1
  1. 1.Institut für Faserverbundleichtbau und AdaptronicsDeutsches Zentrum für Luft- und RaumfahrtBraunschweigGermany

Personalised recommendations