• Martin Wiedemann
  • Michael Sinapius
Part of the Research Topics in Aerospace book series (RTA)


Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.


Primary Structure Composite Structure Additional Function Smart Material Lightweight Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Maxwell, C.: Scientific Papers II. Cambridge University Press, Cambridge (1869)Google Scholar
  2. 2.
    Michell, A.G.M.: The limit of economy of materials in frame structures. Philos. Mag. Ser. 8, 589–597 (1904)zbMATHCrossRefGoogle Scholar
  3. 3.
    Suchov, V.G.: Die Kunst der sparsamen Konstruktion, bearbeitet von R. Graefe. Deutsche Verlags-Anstalt, Stuttgart (1990)Google Scholar
  4. 4.
    Wiedemann, J.: Leichtbau 2: Konstruktion. Springer-Verlag, Berlin-Heidelberg-New York (1996)Google Scholar
  5. 5.
    Hertel, H.: Leichtbau. Springer-Verlag, Berlin (1960). (Reprint 1980)zbMATHCrossRefGoogle Scholar
  6. 6.
    Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells. McGraw-Hill, NY (1959)Google Scholar
  7. 7.
    Pflüger, A.: Stabilitätsprobleme der Elastostatik. Springer-Verlag, Berlin (1975)zbMATHGoogle Scholar
  8. 8.
    Kossira, H.: Grundlagen des Leichtbaus. Springer Verlag, Berlin-Heidelberg, NY (1996)CrossRefGoogle Scholar
  9. 9.
    Knothe, K., Wessels, H.: Finite Element. Springer Verlag, Berlin-Heidelberg, NY (1991)Google Scholar
  10. 10.
    Drechsler, K.: CFK technologie im Automobilbau—Was man von anderen Märkten lernen kann. CCe.V. automotive symposium, Neckarsulm (2010)Google Scholar
  11. 11.
    Giurgiutiu, V., et al.: Active sensors for health monitoring of aging aerospace structures. University of South Carolina, Mechanical Engineering Department, SC 29208Google Scholar
  12. 12.
    Elspass, W.J., Flemming, M.: Aktive Funktionsbauweisen. Springer-Verlag, Berlin (1998)CrossRefGoogle Scholar
  13. 13.
    Neumann, D.: Bausteine “Intelligenter Technik von Morgen—Funktionswerkstoffe in der Adaptronik. Wissenschaftliche Buchgesellschaft Darmstadt (1995)Google Scholar
  14. 14.
    Janocha, H., et al.: Adaptronics and Smart Structures. Springer, Berlin-Heidelberg, NY (1999). (ISBN 3-540-61484-2)Google Scholar
  15. 15.
    Jenditza, D., et al.: Technischer Einsatz Neuer Aktoren. Expert Verlag, Renningen-Malmsheim (1998). (ISBN 3-8169-1589-2)Google Scholar
  16. 16.
    Guran, A., et al.: Structronic Systems: Smart Structures, Devices and Systems. World Scientific, Singapore, New Jersey, London, Hong Kong (1998). (ISBN 981-02-2955-0)Google Scholar
  17. 17.
    Jaffe, B., Roth, R.S., Marzullo, S.: Piezoelectreic properties of lead zirconate-lead titanate solid solutiuon ceramics. J. Apll. Phys. 25, 809–810 (1954)CrossRefGoogle Scholar
  18. 18.
    Bank, R.: Shape Memory Effects in Alloys, p. 537. Plenum, NY (1997)Google Scholar
  19. 19.
    Thomson, B.S., Gandhi, M.V.: Smart Materials and Structures Technologies. An Intelligence Report. Technomic Publishing Company, Lancaster (1990)Google Scholar
  20. 20.
    Lu, K.J., Kota, S.: Design of compliant mechanisms for morphing structural shapes. J. Intell. Mater. Syst. Struct. 14(6), 379–391 (2003)CrossRefGoogle Scholar
  21. 21.
    Nagel, B., Monner, H.P., Breitbach, E.: Aerolastic tailoring transsonischer tragflü-gel auf basis anisotroper und aktiver strukturen. Deutscher Luft- und Raumfahrt-kongress, Dresden (2004)Google Scholar
  22. 22.
    Campanile, L.F., Carli, V., Sachau, D.: Adaptive wing model for wind channel tests. In: Paper presented at the RTO AVT symposium on “active control technology for enhanced performance operational capabilities of military aircraft, land vehicles and sea vehicles”, Braunschweig, Germany, and published in RTO MP-051, 8–11 May 2000Google Scholar
  23. 23.
    Schütze, R., Goetting, H.C., Breitbach, E., Grützmacher, T.: Lightweight engine mounting based on adaptive CFRP struts for active vibration suppression. Aerosp. Sci. Technol. 6, 381–390 (1998)CrossRefGoogle Scholar
  24. 24.
    Tom, W., Elmar, B., Olaf H.: Self-tuning active electromechanical absorbers for tonal noise reduction of a car roof. In: Proceedings of inter-noise 2007 Istanbul, the 36th International Congress & Exhibition on Noise Control Engineering (Ber.-Nr:in07_220), Inter-Noise 2007, 2007-08-28–2007-08-31, Istanbul (Turkey) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute for Composite Structures Adaptive SystemsGerman Aerospace Center DLR BraunschweigGermany

Personalised recommendations