Skip to main content

The Quick Search Algorithm of Pulsar Period Based on Unevenly Spaced Timing Data

  • 1905 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 159)

Abstract

Using the timing information of pulsar signal for autonomous navigation of spacecraft in deep space has the vital significance, the accurate timing model (period and period derivation) is the foundation of achieving high precision auto-navigation solution. Both \( \chi^{2} \) assessment method and Lomb algorithm are analyzed, the idea is brought forward that the initial value of pulsar period is gained using the \( \chi^{2} \) assessment method, then the result of period is refined by Lomb algorithm. Meanwhile, the Lomb algorithm is ameliorated using by the idea of FFT algorithm, the efficiency of operation is advanced highly. Finally the exact pulsar period is estimated and correct pulse profile is replicated using the algorithms and the measured timing data from the X-ray source simulated system.

Keywords

  • Pulsar navigation
  • Period search
  • Profile replicate
  • Lomb algorithm
  • FFT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-29187-6_57
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-29187-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Woodfork, D. W. (2005). The use of x-ray pulsars for aiding GPS satellite orbit determination. Air Force Institute of Technology, Ohio, Degree of Master of Science in Astronautical Engineering.

    Google Scholar 

  2. Mao, Y. (2009). Research on X-ray pulsar navigation algorithms. Zhengzhou, Henan: PLA Information Engineering University, Zhengzhou.

    Google Scholar 

  3. Sheikh, S. I. (2005). The use of variable celestial x-ray sources for spacecraft navigation. Maryland, MD: University of Maryland, Maryland, Department of Aerospace Engineering.

    Google Scholar 

  4. Burns, W. R., & Clark, B. G. (1969). Pulsar search techniques. Journal of Astronomy and Astrophysics, 2, 280–287.

    Google Scholar 

  5. Ransom, S. M. (2001). New search Techniques for binary Pulsars. Newland, NC: Harvard University, Newland.

    Google Scholar 

  6. Li, J. X. (2008). Theoretical research on timing and autonomous positioning based on X-ray pulsar. Xi’an, Shaanxi: Xi’an polytechnic university, Xi’an.

    Google Scholar 

  7. Su, Z., Wang, Y., Xu, L. p., et al. (2010). A new pulsar Integrates pulse profile recognition algorithm. Journal of Astronautics, 31(6), 1563–1568.

    Google Scholar 

  8. Li, J. X., & Ke, X. Z. (2008). A cumulation method on pulsar stand profile based on Wavelet-Modulus-Maxima correlation information. Acta Astronomica Sinica, 49(4), 394–402.

    Google Scholar 

  9. Lynne, A., & Graham-Smith, F. (2005). Pulsar astronomy. London, England: Cambridge University Press.

    Google Scholar 

  10. Press, W. H., Teukolsky, S. A, Vetterling, W. T. et al. (2007). Numerical Recipes: the art of scientific computing (3rd ed.). London, England: Cambridge University Press.

    Google Scholar 

  11. Hu, G. (2009). Numeric signal processing. Beijing, China: Tsing University Press.

    Google Scholar 

  12. Lomb, N. R. (1976). Least-square frequency analysis of unequally spaced data. Astrophysics and Space Science, 39, 447–462.

    CrossRef  Google Scholar 

  13. Scargle, J. D. (1989). Studies in astronomical time series analysis II-statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 338, 277–280.

    CrossRef  Google Scholar 

  14. Korenberg, M. J., & Brenan, C. J. (1997). Raman spectral estimation via fast orthogonal search. Analyst, 122(9), 879–882.

    Google Scholar 

  15. Jian, N. C., Wang, G. L., Li, J. L., & Zhang, B. (2006). A study about the formational Mechanism of Fake Signals in Spectrum Analysis of Unevenly Sampled Data from VLBI Measurements. Acta Astronomica Sinica, 47(3), 336–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag GmbH Berlin Heidelberg

About this paper

Cite this paper

Zhou, Q., Ren, H., Wu, F., Ji, J., Zhai, Z., Ban, B. (2012). The Quick Search Algorithm of Pulsar Period Based on Unevenly Spaced Timing Data. In: Sun, J., Liu, J., Yang, Y., Fan, S. (eds) China Satellite Navigation Conference (CSNC) 2012 Proceedings. Lecture Notes in Electrical Engineering, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29187-6_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29187-6_57

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29186-9

  • Online ISBN: 978-3-642-29187-6

  • eBook Packages: EngineeringEngineering (R0)