Modeling and Solving AFs with a Constraint-Based Tool: ConArg

  • Stefano Bistarelli
  • Francesco Santini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7132)

Abstract

ConArg is a tool based on Constraint Programming which is able to model and solve different problems related to Argumentation Frameworks (AFs). To practically implement the tool, we have used JaCoP, a Java library which provides the user with a Finite Domain Constraint Programming paradigm. Constraint Satisfaction Problems (CSPs) offer a wide number of efficient techniques (as inference and search algorithms) that can tackle the complexity in finding all the possible Dung’s conflict-free, admissible, complete and stable extensions in AFs. Moreover, we can use the tool to solve some of the preference-based problems presented in literature. ConArg is able to randomly generate networks with small-world properties in order to find Dung’s extensions on such interaction graphs. We present the main features of ConArg and we report the performance in time.

Keywords

Constraint Satisfaction Problem Interaction Graph Depth First Search Constraint Class Argumentation Framework 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Cayrol, C.: Inferring from inconsistency in preference-based argumentation frameworks. J. Autom. Reasoning 29(2), 125–169 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Amgoud, L., Devred, C.: Argumentation Frameworks as Constraint Satisfaction Problems. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 110–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Workshop on Non-Monotonic Reasoning, pp. 59–64 (2004)Google Scholar
  6. 6.
    Bistarelli, S., Pirolandi, D., Santini, F.: Solving Weighted Argumentation Frameworks with Soft Constraints. In: Larrosa, J., O’Sullivan, B. (eds.) CSCLP 2009. LNCS, vol. 6384, pp. 1–18. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Bistarelli, S., Santini, F.: ConArg: ARGumentation with CONstraint, http://www.dmi.unipg.it/francesco.santini/argumentation/conarg.zip
  8. 8.
    Bistarelli, S., Santini, F.: A common computational framework for semiring-based argumentation systems. In: ECAI 2010 - 19th European Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 131–136. IOS Press (2010)Google Scholar
  9. 9.
    Bistarelli, S., Santini, F.: Conarg: A constraint-based computational framework for argumentation systems. In: 23rd IEEE International Conference on Tools with Artificial Intelligence. IEEE (to appear 2011)Google Scholar
  10. 10.
    Bistarelli, S., Campli, P., Santini, F.: Finding partitions of arguments with Dung’s properties via SCSPs. In: ACM Symposium on Applied Computing (SAC), pp. 913–919. ACM (2011)Google Scholar
  11. 11.
    Bordeaux, L., Hamadi, Y., Zhang, L.: Propositional satisfiability and constraint programming: A comparative survey. ACM Comput. Surv., 38 (December 2006)Google Scholar
  12. 12.
    Caminada, M.: Semi-stable semantics. In: Computational Models of Argument: Proceedings of COMMA 2006. Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 121–130. IOS Press (2006)Google Scholar
  13. 13.
    Coste-Marquis, S., Devred, C., Marquis, P.: Constrained argumentation frameworks. In: Knowledge Representation and Reasoning (KR), pp. 112–122. AAAI Press (2006)Google Scholar
  14. 14.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Inconsistency tolerance in weighted argument systems. In: Conf. on Autonomous Agents and Multiagent Systems, pp. 851–858. IFAAMS (2009)Google Scholar
  16. 16.
    Egly, U., Alice Gaggl, S., Woltran, S.: ASPARTIX: Implementing Argumentation Frameworks using Answer-Set Programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 734–738. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Gordon, T.F., Karacapilidis, N.I.: The zeno argumentation framework. KI 13(3), 20–29 (1999)Google Scholar
  18. 18.
    Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI (1), pp. 607–615 (1995)Google Scholar
  19. 19.
    Kuchcinski, K., Szymanek, R.: Jacop - java constraint programming solver (2001), http://jacop.osolpro.com/
  20. 20.
    Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9-10), 901–934 (2009)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Nieves, J.C., Cortés, U., Osorio, M.: Possibilistic-based argumentation: An answer set programming approach. In: Mexican International Conference on Computer Science(ENC), pp. 249–260. IEEE Computer Society (2008)Google Scholar
  22. 22.
    O’Madadhain, J., Fisher, D., White, S., Boey, Y.: The JUNG (Java Universal Network/Graph) framework. Technical report, UC Irvine (2003)Google Scholar
  23. 23.
    Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. J. Artif. Int. Res. 34, 521–567 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Ravid, G., Rafaeli, S.: Asynchronous discussion groups as small world and scale free networks. First Monday 9(9) (2004)Google Scholar
  25. 25.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stefano Bistarelli
    • 1
    • 2
  • Francesco Santini
    • 1
    • 3
  1. 1.Dipartimento di Matematica e InformaticaUniversità di PerugiaItaly
  2. 2.Istituto di Informatica e Telematica (CNR)PisaItaly
  3. 3.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands

Personalised recommendations