Analyzing Dynamic Fitness Landscapes of the Targeting Problem of Chaotic Systems

  • Hendrik Richter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)


Targeting is a control concept using fundamental properties of chaotic systems. Calculating the targeting control can be related to solving a dynamic optimization problem for which a dynamic fitness landscape can be formulated. We define the dynamic fitness landscape for the targeting problem and analyze numerically its properties. In particular, we are interested in the modality of the landscape and its fractal characteristics.


Particle Swarm Optimization Search Space Lyapunov Exponent Optimal Control Problem Chaotic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 1. Athena Scientific, Belmont (2005)zbMATHGoogle Scholar
  2. 2.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. 2. Athena Scientific, Belmont (2007)Google Scholar
  3. 3.
    Bobbin, J., Yao, X.: Solving optimal control problems with a cost on changing control by evolutionary algorithms. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) Proc. 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), pp. 331–336. IEEE Press, Piscataway (1997)CrossRefGoogle Scholar
  4. 4.
    Bollt, E.M.: Targeting control of chaotic systems. In: Chen, G., Yu, X., Hill, D.J. (eds.) Chaos and Bifurcations Control: Theory and Applications, pp. 1–25. Springer, Berlin (2003)Google Scholar
  5. 5.
    Cai, X., Cui, Z.: Using stochastic dynamic step length particle swarm optimization to direct orbits of chaotic systems. In: Sun, F., Wang, Y., Lu, J., Zhang, B., Kinsner, W., Zadeh, L.A. (eds.) Proc. 9th IEEE Int. Conf. on Cognitive Informatics (ICCI 2010), pp. 194–198. IEEE Press (2010)Google Scholar
  6. 6.
    Fleming, P.J., Purshouse, R.C.: Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice 10, 1223–1241 (2002)CrossRefGoogle Scholar
  7. 7.
    Gao, W.F., Liu, S.Y., Jiang, F.: An improved artificial bee colony algorithm for directing orbits of chaotic systems. Applied Mathematics and Computation 218, 3868–3879 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)zbMATHCrossRefGoogle Scholar
  9. 9.
    Holmes, P.J.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. London A 292, 419–448 (1979)CrossRefGoogle Scholar
  10. 10.
    Hoshino, T., Mitsumoto, D., Nagano, T.: Fractal fitness landscape and loss of robustness in evolutionary robot navigation. Autonomous Robots 5, 199–213 (1998)CrossRefGoogle Scholar
  11. 11.
    Iplikci, S., Denizhan, Y.: Targeting in dissipative chaotic systems: A survey. Chaos 12, 995–1005 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kallel, L., Naudts, B., Reeves, C.R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2001)Google Scholar
  13. 13.
    Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Directing orbits of chaotic systems by particle swarm optimization. Chaos, Solitons & Fractals 29, 454–461 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Lopez Cruz, I.L., Van Willigenburg, L.G., Van Straten, G.: Efficient Differential Evolution algorithms for multimodal optimal control problems. Applied Soft Computing 3, 97–122 (2003)CrossRefGoogle Scholar
  15. 15.
    Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)Google Scholar
  16. 16.
    Michalewicz, Z., Janikow, C.Z., Krawczyk, J.B.: A modified genetic algorithm for optimal control problems. Computers and Mathematics with Applications 23, 83–94 (1992)zbMATHCrossRefGoogle Scholar
  17. 17.
    Paskota, M., Mees, A.I., Teo, K.L.: Geometry of targeting of chaotic systems. Int. J. Bifurcation and Chaos 5, 1167–1173 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Richter, H.: Coupled map lattices as spatio–temporal fitness functions: Landscape measures and evolutionary optimization. Physica D237, 167–186 (2008)Google Scholar
  19. 19.
    Richter, H.: Evolutionary Optimization and Dynamic Fitness Landscapes: From Reaction–Diffusion Systems to Chaotic CML. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.) Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267, pp. 409–446. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65, 3215–3218 (1990)CrossRefGoogle Scholar
  21. 21.
    Shinbrot, T., Grebogi, C., Ott, E., Yorke, J.A.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)CrossRefGoogle Scholar
  22. 22.
    Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness landscapes and evolvability. Evolut. Comput. 10, 1–34 (2002)CrossRefGoogle Scholar
  23. 23.
    Stadler, P.F., Stephens, C.R.: Landscapes and effective fitness. Comm. Theor. Biol. 8, 389–431 (2003)CrossRefGoogle Scholar
  24. 24.
    Weinberger, E.D., Stadler, P.F.: Why some fitness landscapes are fractal. J. Theor. Biol. 163, 255–275 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hendrik Richter
    • 1
  1. 1.Faculty of Electrical Engineering & Information TechnologyHTWK Leipzig University of Applied SciencesLeipzigGermany

Personalised recommendations