Applying (Hybrid) Metaheuristics to Fuel Consumption Optimization of Hybrid Electric Vehicles

  • Thorsten Krenek
  • Mario Ruthmair
  • Günther R. Raidl
  • Michael Planer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)


This work deals with the application of metaheuristics to the fuel consumption minimization problem of hybrid electric vehicles (HEV) considering exactly specified driving cycles. A genetic algorithm, a downhill-simplex method and an algorithm based on swarm intelligence are used to find appropriate parameter values aiming at fuel consumption minimization. Finally, the individual metaheuristics are combined to a hybrid optimization algorithm taking into account the strengths and weaknesses of the single procedures. Due to the required time-consuming simulations it is crucial to keep the number of candidate solutions to be evaluated low. This is partly achieved by starting the heuristic search with already meaningful solutions identified by a Monte-Carlo procedure. Experimental results indicate that the implemented hybrid algorithm achieves better results than previously existing optimization methods on a simplified HEV model.


hybrid metaheuristic genetic algorithm downhill-simplex particle-swarm-optimization hybrid electric vehicles driving cycles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finkel, D.: Direct optimization algorithm user guide. North Carolina State University, Center for Research in Scientific Computation 2 (2003)Google Scholar
  2. 2.
    Gao, D., Mi, C., Emadi, A.: Modeling and simulation of electric and hybrid vehicles. Proceedings of the IEEE 95(4), 729–745 (2007)CrossRefGoogle Scholar
  3. 3.
    Gao, W., Porandla, S.: Design optimization of a parallel hybrid electric powertrain. In: IEEE Conference on Vehicle Power and Propulsion, pp. 6–12. IEEE (2005)Google Scholar
  4. 4.
    Huang, B., Wang, Z., Xu, Y.: Multi-objective genetic algorithm for hybrid electric vehicle parameter optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 5177–5182 (2006)Google Scholar
  5. 5.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)Google Scholar
  6. 6.
    Krenek, T.: Verbrauchsminimierung eines Hybridfahrzeuges im Neuen Europäischen Fahrzyklus. Master’s thesis, Vienna University of Technology, Institute of Computer Graphics and Algorithms, Vienna, Austria (2011)Google Scholar
  7. 7.
    Markel, T., Wipke, K.: Optimization techniques for hybrid electric vehicle analysis using advisor. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, New York, USA, pp. 11–16 (2001)Google Scholar
  8. 8.
    Meywerk, M.: CAE-Methoden in der Fahrzeugtechnik. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Michalewicz, Z.: Heuristic methods for evolutionary computation techniques. Journal of Heuristics 1(2), 177–206 (1996)CrossRefGoogle Scholar
  10. 10.
    Montazeri-Gh, M., Poursamad, A., Ghalichi, B.: Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles. Journal of the Franklin Institute 343(4-5), 420–435 (2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Myers, R., Montgomery, D., Anderson-Cook, C.: Response surface methodology: process and product optimization using designed experiments. Wiley (2009)Google Scholar
  12. 12.
    Nelder, J., Mead, R.: A Simplex Method for Function Minimization. Oxford Journals - The Computer Journal, British Computer Society 7(4), 308–313 (1965)zbMATHGoogle Scholar
  13. 13.
    Nocedal, J., Wright, S.: Numerical optimization. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  14. 14.
    Wipke, K., Markel, T., Nelson, D.: Optimizing energy management strategy and degree of hybridization for a hydrogen fuel cell SUV. In: Proceedings of 18th Electric Vehicle Symposium, Berlin (2001)Google Scholar
  15. 15.
    Wu, J., Zhang, C., Cui, N.: PSO algorithm-based parameter optimization for HEV powertrain and its control strategy. International Journal of Automotive Technology 9(1), 53–59 (2008)CrossRefGoogle Scholar
  16. 16.
    Wu, X., Cao, B., Wen, J., Bian, Y.: Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter. In: IEEE Conference on Vehicle Power and Propulsion, Harbin, China, pp. 1–5 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thorsten Krenek
    • 1
  • Mario Ruthmair
    • 2
  • Günther R. Raidl
    • 2
  • Michael Planer
    • 1
  1. 1.Institute for Powertrains and Automotive TechnologyVienna University of TechnologyViennaAustria
  2. 2.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations