A Generic Approach to Parameter Control

  • Giorgos Karafotias
  • S. K. Smit
  • A. E. Eiben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)

Abstract

On-line control of EA parameters is an approach to parameter setting that offers the advantage of values changing during the run. In this paper, we investigate parameter control from a generic and parameter-independent perspective. We propose a generic control mechanism that is targeted to repetitive applications, can be applied to any numeric parameter and is tailored to specific types of problems through an off-line calibration process. We present proof-of-concept experiments using this mechanism to control the mutation step size of an Evolutionary Strategy (ES). Results show that our method is viable and performs very well, compared to the tuning approach and traditional control methods.

Keywords

Genetic Algorithm Parameter Control Evolutionary Algorithm Repetitive Application Controller Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  2. 2.
    De Jong, K.: Parameter Setting in EAs: a 30 Year Perspective. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 1–18. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    di Tollo, G., Lardeux, F., Maturana, J., Saubion, F.: From Adaptive to More Dynamic Control in Evolutionary Algorithms. In: Hao, J.-K. (ed.) EvoCOP 2011. LNCS, vol. 6622, pp. 130–141. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)CrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolutionary Algorithms. In: Lobo, F., Lima, C., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: Proceedings of the Third International Conference on Genetic Algorithms, pp. 104–109. Morgan Kaufmann Publishers Inc., San Francisco (1989)Google Scholar
  7. 7.
    Karafotias, G., Haasdijk, E., Eiben, A.E.: An algorithm for distributed on-line, on-board evolutionary robotics. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 171–178. ACM (2011)Google Scholar
  8. 8.
    Lee, M.A., Takagi, H.: Dynamic control of genetic algorithms using fuzzy logic techniques. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 76–83. Morgan Kaufmann (1993)Google Scholar
  9. 9.
    Majig, M., Fukushima, M.: Adaptive fitness function for evolutionary algorithm and its applications. In: International Conference on Informatics Research for Development of Knowledge Society Infrastructure, pp. 119–124 (2008)Google Scholar
  10. 10.
    Maturana, J., Saubion, F.: On the Design of Adaptive Control Strategies for Evolutionary Algorithms. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 303–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Nannen, V., Smit, S., Eiben, A.E.: Costs and Benefits of Tuning Parameters of Evolutionary Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 528–538. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rechenberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach Prinzipien des Biologischen Evolution. Fromman-Hozlboog Verlag, Stuttgart (1973)Google Scholar
  13. 13.
    Schraudolph, N.N., Belew, R.K.: Dynamic parameter encoding for genetic algorithms. Machine Learning 9, 9–21 (1992)Google Scholar
  14. 14.
    Smit, S., Eiben, A.E.: Multi-problem parameter tuning using bonesa. In: Hao, J., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) Artificial Evolution, pp. 222–233 (2011)Google Scholar
  15. 15.
    Smit, S.K., Szláavik, Z., Eiben, A.E.: Population diversity index: a new measure for population diversity. In: GECCO (Companion), pp. 269–270 (2011)Google Scholar
  16. 16.
    Smith, R., Smuda, E.: Adaptively resizing populations: Algorithm, analysis and first results. Complex Systems 9(1), 47–72 (1995)Google Scholar
  17. 17.
    Spears, W.M.: Adapting crossover in evolutionary algorithms. In: Proceedings of the Fourth Annual Conference on Evolutionary Programming, pp. 367–384. MIT Press (1995)Google Scholar
  18. 18.
    Vajda, P., Eiben, A.E., Hordijk, W.: Parameter Control Methods for Selection Operators in Genetic Algorithms. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 620–630. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Wong, Y.-Y., Lee, K.-H., Leung, K.-S., Ho, C.-W.: A novel approach in parameter adaptation and diversity maintenance for genetic algorithms. Soft Computing - A Fusion of Foundations, Methodologies and Applications 7, 506–515 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Giorgos Karafotias
    • 1
  • S. K. Smit
    • 1
  • A. E. Eiben
    • 1
  1. 1.Vrije UniversiteitAmsterdamNetherlands

Personalised recommendations