The Emergence of Multi-cellular Robot Organisms through On-Line On-Board Evolution

  • Berend Weel
  • Evert Haasdijk
  • A. E. Eiben
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7248)


We investigate whether a swarm of robots can evolve controllers that cause aggregation into ‘multi-cellular’ robot organisms without a specific reward to do so. To this end, we create a world where aggregated robots receive more energy than individual ones and enable robots to evolve their controllers on-the-fly, during their lifetime. We perform experiments in six different implementations of the basic idea distinguished by the system of energy distribution and the level of advantage aggregated robots have over individual ones. The results show that ‘multi-cellular’ robot organisms emerge in all of these cases.


Reward Function Robot Controller Baseline Experiment Feeding Ground Power Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bianco, R., Nolfi, S.: Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science 16(4), 227–248 (2004)CrossRefGoogle Scholar
  2. 2.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press (1999)Google Scholar
  3. 3.
    Şahin, E.: Swarm robotics: From sources of inspiration to domains of application. Swarm Robotics, 10–20 (2005)Google Scholar
  4. 4.
    Eiben, A.E., Haasdijk, E., Bredeche, N.: Embodied, on-line, on-board evolution for autonomous robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution, vol. ch. 5.2, pp. 361–382. Springer, Heidelberg (2010)Google Scholar
  5. 5.
    Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics 22, 1115–1130 (2006)CrossRefGoogle Scholar
  6. 6.
    Groß, R., Dorigo, M.: Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior 16(5), 285 (2008)CrossRefGoogle Scholar
  7. 7.
    Haasdijk, E., Eiben, A.E., Karafotias, G.: On-line evolution of robot controllers by an encapsulated evolution strategy. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. IEEE Press (2010)Google Scholar
  8. 8.
    Huijsman, R.J., Haasdijk, E., Eiben, A.: An on-line on-board distributed algorithm for evolutionary robotics. In: Hao, J., Legrand, P., Collet, P., Monmarch, N., Lutton, E., Schoenauer, M. (eds.) Proceedings of Artificial Evolution, 10th International Conference on Evolution Artificielle, EA 2011 (2011)Google Scholar
  9. 9.
    Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Rico, L., Jemai, J., Havlik, J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-line and on-board artificial evolution. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1079–1086 (2009)Google Scholar
  10. 10.
    Kutzer, M.D.M., Moses, M.S., Brown, C.Y., Scheidt, D.H., Chirikjian, G.S., Armand, M.: Design of a new independently-mobile reconfigurable modular robot. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 2758–2764. IEEE (2010)Google Scholar
  11. 11.
    Laredo, J.L.J., Eiben, A.E., Steen, M., Merelo, J.J.: EvAg: a scalable peer-to-peer evolutionary algorithm. Genetic Programming and Evolvable Machines 11(2), 227–246 (2009)CrossRefGoogle Scholar
  12. 12.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: Swarm-bot: A new distributed robotic concept. Autonomous Robots 17(2/3), 193–221 (2004)CrossRefGoogle Scholar
  13. 13.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    O’Grady, R., Christensen, A.L., Dorigo, M.: Autonomous Reconfiguration in a Self-assembling Multi-robot System. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008. LNCS, vol. 5217, pp. 259–266. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Smit, S.K., Eiben, A.E.: Multi-problem parameter tuning using BONESA. In: Hao, J., Legrand, P., Collet, P., Monmarch, N., Lutton, E., Schoenauer, M. (eds.) Proceedings of Artificial Evolution, 10th International Conference on Evolution Artificielle (EA 2011), pp. 222–233 (2011)Google Scholar
  16. 16.
    Wei, H., Cai, Y., Li, H., Li, D., Wang, T.: Sambot: A self-assembly modular robot for swarm robot. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 66–71. IEEE (2010)Google Scholar
  17. 17.
    Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robotics & Automation Magazine 14(1), 43–52 (2007)CrossRefGoogle Scholar
  18. 18.
    Yim, M., Shirmohammadi, B., Sastra, J., Park, M., Dugan, M., Taylor, C.: Towards robotic self-reassembly after explosion. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2767–2772. IEEE (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Berend Weel
    • 1
  • Evert Haasdijk
    • 1
  • A. E. Eiben
    • 1
  1. 1.Vrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations