Skip to main content

A Modified Extend Kalman Particle Filter with Application to Relative Navigation

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2012 Proceedings

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 160))

  • 2040 Accesses

Abstract

To improve the accuracy of relative navigation for spacecraft formation flying in eccentric orbits, precise relative motion equation was used and Carrier-phase Difference GPS technology was adopted for relative information measurement. A modified version of Extended Kalman Particle Filter algorithm, called MEKPF, was used for navigation filter design. Simulation results provided later indicate the proposed navigation approach can provide an accuracy and consistent relative navigation output for spacecraft formation flying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madison, R. W. (1999). Micro-satellite based, on-orbit servicing work at the Air Force Research Laboratory. Kirtland AFB, NM: Air Force Research Laboratory.

    Google Scholar 

  2. Weismuller, T., & Leinz, M. (2006). GN&C technology demonstrated by the orbit express autonomous rendezvous and capture sensor system. 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, USA.

    Google Scholar 

  3. How, J. P., & Tillerson, M. (2001). Analysis of the impact of sensor noise on formation flying control. Proceedings of the American Control Conference, Arlington, VA (pp. 3986–3991).

    Google Scholar 

  4. Tillerson, M. (2002). Coordination and control of multiple spacecraft using convex optimization techniques. S.M. Thesis, Department of Aeronautics and Astronautics, MIT.

    Google Scholar 

  5. Carpenter, J. R., Leitner, J. A., Folta, D. C., & Burns, R. D. (2003). Benchmark problems for spacecraft formation flight missions. AIAA Paper 2003-5364.

    Google Scholar 

  6. Clohessy, W. H., & Wiltshire, R. S. (1960). Terminal guidance for satellite rendezvous. Journal of Aerospace Sciences, 27, 653.

    MATH  Google Scholar 

  7. Hill, G. (1878). Researches in the lunar theory. American Journal of Mathematics, 1, 5–26.

    Article  MathSciNet  Google Scholar 

  8. Kim, S. G., Crassidis, J. L., Yang, C., & Fosbury, A. M. (2007). Kalman filtering for relative spacecraft attitude and position estimation. Journal of Guidance, Control, and Dynamics, 30(1), 133–143.

    Article  Google Scholar 

  9. Xia, Q., Rao, M., Ying, Y., & Shen, X. (1994). Adaptive fading Kalman filter with an application. Automatica, 30(8), 1333–1338.

    Article  MathSciNet  Google Scholar 

  10. Dan, X., & Cao, X. (2006). Relative navigation with maneuvers using a suboptimal fading extended Kalman filter. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, August 13–16.

    Google Scholar 

  11. Karlgaard, C. D. (2006). Robust rendezvous navigation in elliptical orbit. Journal of Guidance, Control, and Dynamics, 29(2), 495–499.

    Article  Google Scholar 

  12. Schaub, H., & Junkins, J. L. (2003). Analytical mechanics of aerospace systems. New York: American Institute of Aeronautics and Astronautics, Inc.

    Google Scholar 

  13. Xing, G. Q., & Shabbir, A. P. (1999). Relative attitude kinematics & dynamics and its applications to spacecraft attitude state capture and tracking in large angle slewing maneuvers. Proceedings of the 1999 Space Control Conference, MIT Lincoln Laboratories.

    Google Scholar 

  14. Gorden, N. J., Salmond, D. J., & Simth, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian states estimation. IEE Proceeding, 140(2), 107–113.

    Google Scholar 

  15. Pitt, M. K., & Shephart, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.

    Article  MathSciNet  MATH  Google Scholar 

  16. Roudolph, M., Arnaud, D., Nando, F., & Eric Wan (2000). The unscented particle filter. Technical Report, Cambrige University Engineering Department.

    Google Scholar 

  17. Schaub, H. (2002). Spacecraft relative orbit geometry description through orbit element differences. 14th U.S. National Congress of Theoretical and Applied Mechanics Blacksburg, VA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, X., Zhang, L., Qian, X., Xu, Q., Meng, Y., Su, Z. (2012). A Modified Extend Kalman Particle Filter with Application to Relative Navigation. In: Sun, J., Liu, J., Yang, Y., Fan, S. (eds) China Satellite Navigation Conference (CSNC) 2012 Proceedings. Lecture Notes in Electrical Engineering, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29175-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29175-3_42

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29174-6

  • Online ISBN: 978-3-642-29175-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics