A Modified Extend Kalman Particle Filter with Application to Relative Navigation

  • Xiaoliang Wang
  • Lixin Zhang
  • Xiaoping Qian
  • Qibing Xu
  • Yansong Meng
  • Zhe Su
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 160)


To improve the accuracy of relative navigation for spacecraft formation flying in eccentric orbits, precise relative motion equation was used and Carrier-phase Difference GPS technology was adopted for relative information measurement. A modified version of Extended Kalman Particle Filter algorithm, called MEKPF, was used for navigation filter design. Simulation results provided later indicate the proposed navigation approach can provide an accuracy and consistent relative navigation output for spacecraft formation flying.


Extend Kalman Filter Clock Error Reference Orbit True Anomaly Relative Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Madison, R. W. (1999). Micro-satellite based, on-orbit servicing work at the Air Force Research Laboratory. Kirtland AFB, NM: Air Force Research Laboratory.Google Scholar
  2. 2.
    Weismuller, T., & Leinz, M. (2006). GN&C technology demonstrated by the orbit express autonomous rendezvous and capture sensor system. 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, USA.Google Scholar
  3. 3.
    How, J. P., & Tillerson, M. (2001). Analysis of the impact of sensor noise on formation flying control. Proceedings of the American Control Conference, Arlington, VA (pp. 3986–3991).Google Scholar
  4. 4.
    Tillerson, M. (2002). Coordination and control of multiple spacecraft using convex optimization techniques. S.M. Thesis, Department of Aeronautics and Astronautics, MIT.Google Scholar
  5. 5.
    Carpenter, J. R., Leitner, J. A., Folta, D. C., & Burns, R. D. (2003). Benchmark problems for spacecraft formation flight missions. AIAA Paper 2003-5364.Google Scholar
  6. 6.
    Clohessy, W. H., & Wiltshire, R. S. (1960). Terminal guidance for satellite rendezvous. Journal of Aerospace Sciences, 27, 653.zbMATHGoogle Scholar
  7. 7.
    Hill, G. (1878). Researches in the lunar theory. American Journal of Mathematics, 1, 5–26.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kim, S. G., Crassidis, J. L., Yang, C., & Fosbury, A. M. (2007). Kalman filtering for relative spacecraft attitude and position estimation. Journal of Guidance, Control, and Dynamics, 30(1), 133–143.CrossRefGoogle Scholar
  9. 9.
    Xia, Q., Rao, M., Ying, Y., & Shen, X. (1994). Adaptive fading Kalman filter with an application. Automatica, 30(8), 1333–1338.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dan, X., & Cao, X. (2006). Relative navigation with maneuvers using a suboptimal fading extended Kalman filter. Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, Dalian, August 13–16. Google Scholar
  11. 11.
    Karlgaard, C. D. (2006). Robust rendezvous navigation in elliptical orbit. Journal of Guidance, Control, and Dynamics, 29(2), 495–499.CrossRefGoogle Scholar
  12. 12.
    Schaub, H., & Junkins, J. L. (2003). Analytical mechanics of aerospace systems. New York: American Institute of Aeronautics and Astronautics, Inc.Google Scholar
  13. 13.
    Xing, G. Q., & Shabbir, A. P. (1999). Relative attitude kinematics & dynamics and its applications to spacecraft attitude state capture and tracking in large angle slewing maneuvers. Proceedings of the 1999 Space Control Conference, MIT Lincoln Laboratories.Google Scholar
  14. 14.
    Gorden, N. J., Salmond, D. J., & Simth, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian states estimation. IEE Proceeding, 140(2), 107–113.Google Scholar
  15. 15.
    Pitt, M. K., & Shephart, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Roudolph, M., Arnaud, D., Nando, F., & Eric Wan (2000). The unscented particle filter. Technical Report, Cambrige University Engineering Department.Google Scholar
  17. 17.
    Schaub, H. (2002). Spacecraft relative orbit geometry description through orbit element differences. 14th U.S. National Congress of Theoretical and Applied Mechanics Blacksburg, VA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaoliang Wang
    • 1
  • Lixin Zhang
    • 1
  • Xiaoping Qian
    • 1
  • Qibing Xu
    • 1
  • Yansong Meng
    • 1
  • Zhe Su
    • 1
  1. 1.Institute of Satellite Navigation and Intra-Satellite-Link TechnologyAcademy of Space Electronic Information TechnologyXi’anChina

Personalised recommendations