Skip to main content

Cycle Structure Analysis of QC-IRA-B Codes Based on Circulant Permutation Matrices

  • Conference paper
  • First Online:
Book cover China Satellite Navigation Conference (CSNC) 2012 Proceedings

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 160))

  • 2035 Accesses

Abstract

Based on analyzing the cycle structure of QC-IRA-B codes, QC-IRA-d code was presented in another paper without analysis process in detail and this kind of code is suitable for channel coding scheme of navigation data of COMPASS. This paper analyzes the cycle structure of QC-IRA-B codes based on circulant permutation matrices. The analysis of this paper shows that some special cycle structures result in lots of low-weight code words which worsen the error-correcting performance of QC-IRA-B codes. This paper also shows why QC-IRA-d codes have good error-correcting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berrou, C., Glavieux, A., & Thitimajshima, P. (1993). Near Shannon limit error-correcting and decoding: Turbo codes. IEEE International Conference on Communications, Geneva, Switzerland, May 1993 (pp. 1064–1070).

    Google Scholar 

  2. Mackay, D. J. C., & Neal, R. M. (1996). Near Shannon-limit performance of low-density parity-check codes. Electronics Letters, 32, 1645–1646.

    Article  Google Scholar 

  3. Jin, H., Khandekar, A., & McEliece, R. (2000). Irregular repeat-accumulate codes. The Second International Conference on Turbo Codes, Brest, France, September 2000.

    Google Scholar 

  4. Roumy, A., & Guemghar, S. (2004). Design methods for irregular repeat–accumulate codes. IEEE Transactions on Information Theory, 50(8), 1711–1727.

    Google Scholar 

  5. Hwang, S. O., Myung, S., Lee, H., Park, S.-I., & Lee, J. Y. (2010). Partial parallel encoder for IRA codes. IEEE Electronics Letters, 46(2), 135–137.

    Google Scholar 

  6. Fossorier, M. (2004). Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Transactions on Information Theory, 50(8), 1788–1793.

    Article  MathSciNet  Google Scholar 

  7. Lu, J., & Moura, M. F. (2005). Partition-and-shift LDPC codes. IEEE Transactions on Magnetics, 41(10), 2977–2979.

    Google Scholar 

  8. Lu, J., & Moura, J. M. F. (2006). Structured LDPC codes for high-density recording: large girth and low error floor. IEEE Transactions on Magnetics, 42(2), 208–213.

    Article  Google Scholar 

  9. Li, Z., Chen, L., & Zeng, L. (2006). Efficient encoding of quasi-cyclic LDPC codes. IEEE Transactions on Communications, 54(1), 71–81.

    Article  Google Scholar 

  10. Wang, Z., & Cui, Z. (2007). A memory efficient partially parallel decoder architecture for quasi-cyclic LDPC codes. IEEE Transactions on VLSI Systems, 15(4), 483–488.

    Google Scholar 

  11. Dai, Y., Chen, N., & Yan, Z. (2008). Memory efficient decoder architectures for quasi-cyclic LDPC codes. IEEE Transactions on Circuits and Systems, 55(9), 3697–3710.

    Google Scholar 

  12. Jiang, N., Peng, K., & Song, J. (2009). High-throughput QC-LDPC decoders. IEEE Transactions on Broadcasting, 55(2), 251–259.

    Google Scholar 

  13. Wu, T.-C., Hu, Y.-W., & Lee, C.-M. (2010). Optimization of memory utilization for partially parallel QC-LDPC decoder. ISITA2010, Taichung, Taiwan October 2010.

    Google Scholar 

  14. Dai, Y., & Yan, Z. (2008). Optimal overlapped message passing decoding of quasi-cyclic LDPC codes. IEEE Transactions on VLSI Systems I: Regular Papers, 16(5), 565–578.

    Google Scholar 

  15. Wang, J., Lei, J., Ni, S., Tang, X., & Ou, G. (2011). QC-IRA-d codes based on circulant permutation matrices. IEEE Communications Letters, 15(11), 1224–1227.

    Article  Google Scholar 

  16. Lei, J., Wang, J., & Gao, Y. (2008). The analysis of cycle structure for a class of quasi-cyclic LDPC codes. IEEE International Conference on Communication Systems, November 2008.

    Google Scholar 

  17. Hu, X. Y., Eleftheriou, E., & Amold D. M. (2001). Progressive edge-growth tanner graphs. IEEE Global Telecommunication Conference, February 2001 (pp. 995–1001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Zhang, K., Tang, X., Ou, G. (2012). Cycle Structure Analysis of QC-IRA-B Codes Based on Circulant Permutation Matrices. In: Sun, J., Liu, J., Yang, Y., Fan, S. (eds) China Satellite Navigation Conference (CSNC) 2012 Proceedings. Lecture Notes in Electrical Engineering, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29175-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29175-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29174-6

  • Online ISBN: 978-3-642-29175-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics