Assessing the Impact of Mineral Dust and Adsorption Activation on Cloud Droplet Formation

  • V. A. Karydis
  • P. Kumar
  • D. Barahona
  • I. N. Sokolik
  • A. Nenes
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Most aerosol-cloud-climate assessment studies assume that aerosol with a substantial fraction of soluble material are the sole source of Cloud Condensation Nuclei (CCN). However, insoluble species can also act as good CCN, even if they lack appreciable amounts of soluble material. The source of hygroscopicity in these particles is the adsorption of water vapor onto the surface of the particle. Moreover, during atmospheric transport, fresh dust undergoes aging which results in a coating of soluble material on its surface that augments its CCN activity. Given that dust may affect precipitation in climate-sensitive areas, the ability to capture the complex impact of mineral dust on cloud droplet formation is an important issue for global and regional models. The “unified dust activation framework” of Kumar et al. (2011) can be used to calculate the CCN activity of both fresh and aged dust. In this study, simulations of droplet number are carried out with the GMI chemical transport model. GMI simulates global atmospheric composition which is used to drive the droplet number calculations of Kumar et al. (2011) parameterization. This new framework is a comprehensive treatment of the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts in dust particles and is used to assess the impact of dust and adsorption activation on the predicted global droplet number concentration.

Keywords

Dust Particle Biomass Burning Cloud Droplet Mineral Dust Cloud Condensation Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to acknowledge support from NASA-ACMAP, CONOCO-Phillips, and NOAA.

References

  1. Considine DB, Bergmann DJ, Liu H (2005) Sensitivity of Global Modeling Initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data. Atmos Chem Phys 5:3389–3406. doi: 10.5194/acp-5-3389-2005 CrossRefGoogle Scholar
  2. Fountoukis C, Nenes A (2005) Continued development of a cloud droplet formation parameterization for global climate models. J Geophys Res 110(D11):D11212. doi: 10.1029/2004JD005591 CrossRefGoogle Scholar
  3. Hoose C, Lohmann U, Bennartz R, Croft B, Lesins G (2008) Global simulations of aerosol processing in clouds. Atmos Chem Phys 8(23):6939–6963. doi: 10.5194/acp-8-6939-2008 CrossRefGoogle Scholar
  4. Karydis V, Kumar P, Barahona D, Nenes A (2011) On the effect of insoluble dust particles on global CCN and droplet number. J Geophys Res 116:D23204. doi: 10.1029/2011JD016283 CrossRefGoogle Scholar
  5. Kumar P, Nenes A, Sokolik IN (2009a) Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol. Geophys Res Lett 36:L24804. doi: 10.1029/2009GL040827 CrossRefGoogle Scholar
  6. Kumar P, Sokolik IN, Nenes A (2009b) Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN. Atmos Chem Phys 9(7):2517–2532. doi: 10.5194/acp-9-2517-2009 CrossRefGoogle Scholar
  7. Kumar P, Sokolik IN, Nenes A (2011) Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals. Atmos Chem Phys 11(4):8661–8676. doi: 10.5194/acp-11-8661-2011 CrossRefGoogle Scholar
  8. Levin Z, Teller A, Ganor E, Yin Y (2005) On the interactions of mineral dust, sea-salt particles, and clouds: a measurement and modeling study from the Mediterranean Israeli Dust Experiment campaign. J Geophys Res 110(D20):D20202. doi: 10.1029/2005JD005810 CrossRefGoogle Scholar
  9. Liu XH, Penner JE, Herzog M (2005) Global modeling of aerosol dynamics: model description, evaluation, and interactions between sulfate and nonsulfate aerosols. J Geophys Res 110(D18):D18206. doi: 10.1029/2004JD005674 CrossRefGoogle Scholar
  10. Manktelow PT, Carslaw KS, Mann GW, Spracklen DV (2010) The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm. Atmos Chem Phys 10(2):365–382. doi: 10.5194/acp-10-365-2010 CrossRefGoogle Scholar
  11. Pringle KJ, Tost H, Pozzer A, Poschl U, Lelieveld J (2010) Global distribution of the effective aerosol hygroscopicity parameter for CCN activation. Atmos Chem Phys 10(12):5241–5255. doi: 10.5194/acp-10-5241-2010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • V. A. Karydis
    • 1
  • P. Kumar
    • 2
  • D. Barahona
    • 3
  • I. N. Sokolik
    • 1
  • A. Nenes
    • 1
    • 2
  1. 1.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations