Advertisement

Wind Energy in NW Greece

  • D. C. Chaskos
  • A. Bartzokas
  • J. D. Pnevmatikos
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

In this paper the wind energy in northwestern Greece is studied at 80 m above ground level. The MM5 meteorological model is used to obtain the necessary wind data to estimate the wind energy potential. This model is used operationally by the Laboratory of Meteorology of Ioannina University for daily weather forecast. The model runs in 3 domains (Europe–Greece–Epirus) with the one-way nesting technique. The third domain contains 12,544 (112 × 112) grid points with a spatial resolution of 2 × 2 km. By using a statistical analysis for 1 year wind data, the mean annual power density map and the resultant wind direction map at 80 m above ground level is calculated for NW Greece. The mean annual power density is calculated from the average 2-h wind data of MM5 from the 1st of June 2007 until the 31st of May 2008. The highest values of wind energy are found in the mountainous areas. The maximum estimated value is 815 W/m2.

Keywords

Wind Turbine Wind Energy Wind Data Wind Resource Wind Energy Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bagiorgas HS, Mihalakakou G, Matthopoulos D (2008) A statistical analysis of wind speed distributions in the area of Western Greece. Int J Green Energy 5(1–2):120–137. doi: 10.1080/15435070701839488 CrossRefGoogle Scholar
  2. Bartzokas A, Kotroni V, Lagouvardos K, Lolis CJ, Gkikas A, Tsirogianni MI (2010) Weather forecast in North-Western Greece: RISKMED warnings and verification of MM5 model. Nat Hazard Earth Syst 10:383–394. doi: 10.5194/nhess-10-383-2010 CrossRefGoogle Scholar
  3. Dvorak MJ, Jacobson MZ, Archer CL (2007) California offshore wind energy potential. Proceedings from Windpower 2007: American Wind Energy Association Windpower 2007 conference & exhibition, AWEA, Los Angeles, CA, 3–6 June 2007Google Scholar
  4. Fyrippis I, Axaopoulos PJ, Panayiotou G (2010) Wind energy potential assessment in Naxos Island, Greece. Appl Energy 87(2):577–586. doi: 10.1016/j.apenergy.2009.05.031 CrossRefGoogle Scholar
  5. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339. doi:10.1175/1520-0493(1996) 124 <2322:NBLVDI>2.0.CO;2CrossRefGoogle Scholar
  6. Jamil M, Parsa S, Majidi M (1995) Wind power statistics and an evaluation of wind energy density. Renew Energy 6(5–6):623–628. doi: 10.1016/0960-1481(95)00041-H CrossRefGoogle Scholar
  7. Justus CG (1985) Wind energy. In: Houghton DD (ed) Handbook of applied meteorology, vol 33. Wiley, New York, pp 915–944Google Scholar
  8. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi:10.1175/1520-0450(2004) 043<0170:TKCPAU>2.0.CO;2CrossRefGoogle Scholar
  9. Landberg L, Myllerup L, Rathmann O, Petersen EL, Jørgensen BH, Badger J, Mortensen NG (2003) Wind resource estimation – an overview. Wind Energy 6:261–271CrossRefGoogle Scholar
  10. Mathew S, Pandey KP, Kumar A (2002) Analysis of wind regimes for energy estimation. Renew Energy 25:381–399. doi: 10.1016/S0960-1481(01)00063-5 CrossRefGoogle Scholar
  11. Oikonomou EK, Kilias V, Goumas A, Rigopoulos A, Karakatsani E, Damasiotis M, Papastefanakis D, Marini N (2009) Renewable energy sources (RES) projects and their barriers on a regional scale: the case study of wind parks in the Dodecanese islands, Greece. Energy Policy 37(11):4874–4883. doi: 10.1016/S0960-1481(01)00063-5 CrossRefGoogle Scholar
  12. Palaiologou P, Kalabokidis K, Haralambopoulos D, Feidas H, Polatidis H (2011) Wind characteristics and mapping of power production in the Island of Lesvos, Greece. Comp Geosci 37(7):962–972. doi: 10.1016/j.cageo.2010.05.025 CrossRefGoogle Scholar
  13. Schultz P (1995) An explicit cloud physics parameterization for operational numerical weather prediction. Mon Weather Rev 123:3331–3343Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. C. Chaskos
    • 1
  • A. Bartzokas
    • 1
  • J. D. Pnevmatikos
    • 1
  1. 1.Laboratory of Meteorology, Department of PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations