Total Ozone Observations Made by Dobson Spectrophotometer at the Most SE Station in Europe the Last Twenty Years

  • J. Christodoulakis
  • C. Varotsos
  • D. N. Asimakopoulos
  • C. Tzanis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)

Abstract

Total ozone is closely connected with two crucial environmental problems: ozone depletion and global climate change. The Dobson spectrophotometer is the oldest measuring device (prototype) for total ozone observations in the atmosphere. The Dobson spectrophotometer No. 118 has been installed in Athens, Greece since 1989. We present a brief overview of the main activities of the instrument. According to the results of the intercomparison of the Athens Dobson spectrophotometer with World Standard Dobson Instruments, Dobson No. 118 is a reliable spectrophotometer and its measurements accurate and appropriate for further analysis. The comparison between Dobson measurements at Athens and all the available total ozone observations that have been performed using satellite-borne instrumentation revealed that it may be used as a ground-truth total ozone station for the validation of the satellite total ozone observations.

Keywords

Total Ozone Solar Zenith Angle Ozone Content Total Ozone Content Wavelength Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexandris D, Varotsos C, Kondratyev KY, Chronopoulos G (1999) On the altitude dependence of solar effective UV. Phys Chem Earth PT C 24:515–517Google Scholar
  2. Chandra S, Varotsos CA (1995) Recent trends of the total column ozone: implications for the Mediterranean region. Int J Remote Sens 16:1765–1769CrossRefGoogle Scholar
  3. Christodoulakis J, Tzanis C, Varotsos C (2008) Technical report – Standardization of the Athens Dobson spectrophotometer versus reference Dobson spectrophotometer 064. Int J Remote Sens 29:1917–1920CrossRefGoogle Scholar
  4. Cracknell AP, Varotsos CA (1994) Ozone depletion over Scotland as derived from Nimbus-7 TOMS measurements. Int J Remote Sens 15:2659–2668CrossRefGoogle Scholar
  5. Cracknell AP, Varotsos CA (1995) The present status of the total ozone depletion over Greece and Scotland – A comparison between Mediterranean and more northerly latitudes. Int J Remote Sens 16:1751–1763CrossRefGoogle Scholar
  6. Dobson GMB (1957a) Observers’ handbook for the ozone spectrophotometer. Ann Int Geophys Year 5:46–89Google Scholar
  7. Dobson GMB (1957b) Adjustment and calibration of the ozone spectrophotometer, ibid. V, Part I. Pergamon Press, London, pp 90–113Google Scholar
  8. Efstathiou MN, Varotsos CA, Singh RP, Cracknell AP, Tzanis C (2003) On the longitude dependence of total ozone trends over middle-latitudes. Int J Remote Sens 24:1361–1367CrossRefGoogle Scholar
  9. Feretis E, Theodorakopoulos P, Varotsos C, Efstathiou M, Tzanis C, Xirou T, Alexandridou N, Aggelou M (2002) On the plausible association between environmental conditions and human eye damage. Environ Sci Pollut Res 9:163–165. doi: 10.1007/BF02987482 CrossRefGoogle Scholar
  10. Katsambas A, Varotsos CA, Veziryianni G, Antoniou C (1997) Surface solar ultraviolet radiation: A theoretical approach of the SUVR reaching the ground in Athens, Greece. Environ Sci Pollut Res 4:69–73. doi: 10.1007/BF02986280 CrossRefGoogle Scholar
  11. Kondratyev KY, Varotsos CA (1996) Global total ozone dynamics – Impact on surface solar ultraviolet radiation variability and ecosystems. Environ Sci Pollut Res 3:205–209CrossRefGoogle Scholar
  12. Tzanis C (2009) Total ozone observations at Athens, Greece by satellite-borne and ground-based instrumentation. Int J Remote Sens 30:6023–6033CrossRefGoogle Scholar
  13. Tzanis C, Christodoulakis J, Efstathiou M, Varotsos C (2009) Comparison of the Athens Dobson spectrophotometer with World Standard Instruments. Int J Remote Sens 30: 3943–3950Google Scholar
  14. Varotsos C (2002) The southern hemisphere ozone hole split in 2002. Environ Sci Pollut Res 9:375–376. doi: 10.1007/BF02987584 CrossRefGoogle Scholar
  15. Varotsos C (2005) Power-law correlations in column ozone over Antarctica. Int J Remote Sens 26:3333–3342. doi: 10.1080/01431160500076111 CrossRefGoogle Scholar
  16. Varotsos CA, Cracknell AP (1994) On the accuracy of total ozone measurements made with a Dobson spectrophotometer in Athens. Int J Remote Sens 15:3279–3283CrossRefGoogle Scholar
  17. Varotsos CA, Chronopoulos GJ, Katsikis S, Sakellariou NK (1995) Further evidence of the role of air-pollution on solar ultraviolet-radiation reaching the ground. Int J Remote Sens 16:1883–1886. doi: 10.1080/01431169508954525 CrossRefGoogle Scholar
  18. Varotsos CA, Kondratyev KY, Cracknell AP (2000) New evidence for ozone depletion over Athens, Greece. Int J Remote Sens 21: 2951–2955Google Scholar
  19. Varotsos C, Ondov J, Efstathiou M (2005) Scaling properties of air pollution in Athens, Greece and Baltimore, Maryland. Atmos Environ 39:4041–4047CrossRefGoogle Scholar
  20. Zerefos CS, Bais AF, Meleti C, Ziomas IC (1995) A note on the recent increase of solar UV-B radiation over northern middle latitudes. Geophys Res Lett 22:1245–1247CrossRefGoogle Scholar
  21. Zerefos CS, Balis DS, Bais AF, Gillotay D, Simon PC, Mayer B, Seckmeyer G (1997) Variability of UV-B at four stations in Europe. Geophys Res Lett 24:1363–1366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Christodoulakis
    • 1
  • C. Varotsos
    • 1
  • D. N. Asimakopoulos
    • 1
  • C. Tzanis
    • 1
  1. 1.Climate Research Group, Division of Environmental Physics and MeteorologyUniversity of AthensAthensGreece

Personalised recommendations