Comparative Analysis of MERIS/AATSR Synergy Algorithm Aerosol Retrievals Versus MODIS Aerosol Product and Validation Against AERONET Observations

  • N. BenasEmail author
  • N. Chrysoulakis
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


Aerosol monitoring from space has been performed at mesoscale, for over two decades. Latest satellite aerosol products offer global daily coverage and a typical spatial resolution of 10 km × 10 km. A new synergy algorithm has been recently developed, to retrieve aerosol properties in higher spatial resolution, which may improve the study of aerosols at local scale, increasing the potential of Earth Observation to support local level air quality studies. The algorithm combines both spectral and angular information provided by MERIS and AATSR sensors, respectively. In the present study, the MERIS/AATSR synergy algorithm is validated by comparing the retrieved Aerosol Optical Thickness (AOT) with the respective AOT values observed at AERONET stations located in urban regions globally. AATSR, MERIS and AERONET data for the period August–September 2011 were analyzed. Comparisons with the respective AOT spatial distributions retrieved from MODIS aerosol product were also performed for the broader area of Athens. Results indicate that the retrieved AOT is in good agreement with the corresponding station measurements.


  1. AATSR (2007) AATSR product handbook. European Space Agency – Envisat AATSR product handbook. (2.2) 27 Feb 2007Google Scholar
  2. Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M, Bontemps S, Leroy M, Achard F, Herold M, Ranera F, Arino O (2008) GLOBCOVER: products description and validation report. Toulouse, MEDIASFranceGoogle Scholar
  3. Holben BN, Eck TF, Slutsker I, Tanré D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET – a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16CrossRefGoogle Scholar
  4. Kaufman YJ, Tanré D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223CrossRefGoogle Scholar
  5. North P, Grey W, Heckel A, Fischer J, Preusker R, Brockmann C (2009) MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval, and atmospheric correction. Algorithm theoretical basis document land aerosol and surface reflectance ATBD. ESRIN contract no. 21090/07/I-LGGoogle Scholar
  6. Rast M, Bézy JL, Delwart S (1999) The ESA medium resolution imaging spectrometer (MERIS) – a review of the instrument and its mission. Int J Remote Sens 20:1681–1702CrossRefGoogle Scholar
  7. Remer LA, Tanré D, Kaufman YJ, Ichoku C, Mattoo S, Levy R, Chu DA, Holben BN, Dubovik O, Smirnov A, Martins JV, Li RR, Ahmad Z (2002) Validation of MODIS aerosol retrieval over ocean. Geophys Res Lett 29:MOD03. doi: 10.1029/2001GL013204 CrossRefGoogle Scholar
  8. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62:947–973CrossRefGoogle Scholar
  9. Thomas GE, Carboni E, Marsh SH, Dean SM, Grainger RG, Poulsen CA, Siddans R, Kerridge BJ (2006) GlobAEROSOL data user element: ATSR-2/AATSR algorithm theoretical basis document version 2.0. University of Oxford, UKGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Applied and Computational MathematicsFoundation for Research and Technology – HellasHeraklionGreece

Personalised recommendations