High Resolution Aerosol Optical Depth in the Broader Greek Area Using MODIS Satellite Data

  • G. Athanassiou
  • C. D. Papadimas
  • N. Hatzianastassiou
Conference paper
Part of the Springer Atmospheric Sciences book series (SPRINGERATMO)


We study the spatial (50 km × 50 km) and temporal distribution of aerosol optical depth (AOD) over the broader Greek area on a mean annual, seasonal and monthly basis. Daily visible Level-2 AOD data (AOD 550 nm ) from the MODIS database are used for the period March 2000–February 2008. The mean annual AOD values for the study region range from 0.13 to 0.37, with a mean annual regional AOD value equal to 0.19. Maximum AOD values are found in spring and late summer (August), and minimum in winter. The highest values occur in Eastern Greece (particularly during spring and summer) and near the Aegean coasts of Turkey (Smyrni) and Istanbul (during autumn and winter). The smallest AOD values are found in Western Greece, at some areas of the neighboring Balkan countries, and in the interior of Turkey (during all seasons) as well as in marine areas south and east of Crete (during summer). A decreasing tendency of regional AOD is found from 2000 to 2008, equal to Δ(AOD) = −0.05, implying decreasing aerosol amounts over the study region.


Aerosol Optical Depth Anthropogenic Aerosol African Dust Aerosol Optical Depth Data MODIS Aerosol Optical Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balis D, Amiridis V, Kazadzis S et al (2006) Optical characteristics of desert dust over the East Mediterranean during summer: a case study. Ann Geophys 24(3):807–821CrossRefGoogle Scholar
  2. Fotiadi A, Hatzianastassiou N, Drakakis E et al (2006) Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from aerosol robotic network data. Atmos Chem Phys 6:5399–5413CrossRefGoogle Scholar
  3. Gerasopoulos E, Amiridis V, Kazadzis S et al (2011) Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: the urban environment of Athens. Atmos Chem Phys 11:2145–2159CrossRefGoogle Scholar
  4. Hatzianastassiou N, Katsoulis B, Vardavas I (2004) Global distribution of aerosol direct radiative forcing in ultraviolet–visible wavelengths and consequences for the heat budget. Tellus Ser B 56:51–71CrossRefGoogle Scholar
  5. Hatzianastassiou N, Gkikas MN, Mihalopoulos N et al (2009) Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data. J Geophys Res 114:D24202. doi: 10.1029/2009JD011982 CrossRefGoogle Scholar
  6. Ichoku C, Chu DA, Matoo S et al (2002) A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys Res Lett 29(12):8006. doi: 10.1029/2001GL013206 CrossRefGoogle Scholar
  7. Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007: the physical science basis. Summary for Policymakers, ParisGoogle Scholar
  8. Kalivitis N, Gerasopoulos E, Vrekoussis M et al (2007) Dust transport over the eastern Mediterranean derived from TOMS, AERONET and surface measurements. J Geophys Res 112:D03202. doi: 10.1029/2006JD007510 CrossRefGoogle Scholar
  9. Papadimas CD, Hatzianastassiou N, Mihalopoulos N et al (2008) Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000–2006) MODIS data. J Geophys Res 113:D11205. doi: 10.1029/2007JD009189 CrossRefGoogle Scholar
  10. Ramanathan V, Crutzen PJ, Kiehl JT et al (2001) Aerosols, climate, and the hydrological cycle. Science 294:2119–2124. doi: 10.1126/science.1064034 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Athanassiou
    • 1
  • C. D. Papadimas
    • 1
  • N. Hatzianastassiou
    • 1
  1. 1.Laboratory of Meteorology, Physics DepartmentUniversity of IoanninaIoanninaGreece

Personalised recommendations