Efficient CT Metal Artifacts Reduction Based on Improved Conductivity Coefficient

Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 158)

Abstract

In this paper, we propose a efficient metal artifacts reduction method based on improved conductivity coefficient for computed tomography (CT) and the numerical implementation of our method is also given. The experiment results show that on both visual effect and peak signal to noise ratio (PSNR), the method we propose is superior to conditional interpolation methods and classic total variation model.

Keywords

Image inpainting metal artifact reduction computed tomography (CT) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hsieh, J.: Computed tomography: principles, design, artifacts, and recent advances. SPIE Press, New York (2003)Google Scholar
  2. 2.
    Stradiotti, P., Curti, A., Castellazzi, G., Zerbi, A.: Metal-related atifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur. Spine J. 18(suppl. 1), S102–S108 (2009)CrossRefGoogle Scholar
  3. 3.
    Lewitt, R.M., Bates, R.H.: Image reconstruction from projections(III): Projection completion methods. Optik 50, 189–204 (1978)Google Scholar
  4. 4.
    Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)Google Scholar
  5. 5.
    Crawford, C.R.: Reprojection using a parallel backprojector. Med. Phys. 13, 480–483 (1986)CrossRefGoogle Scholar
  6. 6.
    Zhao, S., Robertson, D.D., Wang, G., Whiting, B., Bae, K.T.: X-ray CT metal artifacts reduction using wavelets: an application for imaging total hip prostheses. IEEE Trans. Med. Imag. 19(12), 1238–1247 (2000)CrossRefGoogle Scholar
  7. 7.
    Duan, X., Zhang, L., Xiao, Y., Cheng, J., Chen, Z., Xing, Y.: Metal artifacts reduction in CT images by sinogram TV inpainting. In: IEEE Nuclear Science Symposium Conference Record, pp. 4175–4177. IEEE Press, New York (2008)Google Scholar
  8. 8.
    De Man, B., Nuyts, J., Dupont, P., Marchal, G., Suetens, P.: An iterative maximum-likelihood polychromatic algorithm for CT. IEEE Trans. Med. Imaging 20, 999–1008 (2001)CrossRefGoogle Scholar
  9. 9.
    Lemmens, C., Faul, D., Nuyts, J.: Suppression of metal artifacts in CT using a reconstruction procedure that combines MAP and projection completion. IEEE Trans. Med. Imaging 28(2), 250–260 (2009)CrossRefGoogle Scholar
  10. 10.
    Chan, T.F., Shen, J.: Nontexture inpainting by curvature-driven diffusions. J. Visual Comm. Image Rep. 12, 436–449 (2001)CrossRefGoogle Scholar
  11. 11.
    Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Computer Phys. 79, 12–49 (1988)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Russ, J.C.: The image processing handbook. CRC Press, New York (2011)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Computer ScienceSichuan UniversityChengduChina

Personalised recommendations