Skip to main content

Populations of Populations: Composing with Multiple Evolutionary Algorithms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7247)

Abstract

We present a music composition system in which musical motives are treated as individuals within a population, and that the audible evolution of populations over time are of musical interest. The system additionally uses genetic algorithms to generate high level musical aspects that control how the population is presented, and how it may be combined with other populations. These algorithms feature fitness functions that adapt based upon context: specifically, by using an analysis of the evolving population, the fitness functions adjust their constituent parameters in selecting strong individuals.

Keywords

  • Biologically inspired music
  • genetic algorithms
  • evolutionary music

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-29142-5_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-29142-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyls, P.: Interactive Composing as the Expression of Autonomous Machine Motivations. In: Proceedings of the International Computer Music Conference, Montreal, pp. 267–274 (2009)

    Google Scholar 

  2. Biles, J.: Autonomous GenJam: Eliminating the Fitness Bottleneck by Eliminating Fitness. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference Workshop Program, San Francisco (2001)

    Google Scholar 

  3. Blackwell, T., Young, M.: Swarm Granulator. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 399–408. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  4. Brindle, R.S.: Beethoven’s Primitive Cell Structures. The Musical Times 139(1865), 18–24 (1998)

    CrossRef  Google Scholar 

  5. Cross, J.: The Stravinsky Legacy. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  6. Eigenfeldt, A.: The Evolution of Evolutionary Software: Intelligent Rhythm Generation in Kinetic Engine. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 498–507. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  7. Ferneyhough, B.: Il Tempo della Figura. Perspectives of New Music 31(1), 10–19 (1993)

    CrossRef  Google Scholar 

  8. Gann, K.: American Music in the Twentieth Century. Schirmer, New York (1997)

    Google Scholar 

  9. Haimo, E.: Schoenberg’s Serial Odyssey: The Evolution of his Twelve-Tone Method 1914-1928. Clarendon Press, New York (1990)

    Google Scholar 

  10. McCormack, J.: Eden: An Evolutionary Sonic Ecosystem. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 133–142. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  11. Miranda, E., Biles, J. (eds.): Evolutionary Computer Music. Springer, London (2007)

    Google Scholar 

  12. Thywissen, K.: GeNotator: An environment for investigation the application of genetic algorithms in computer assisted composition. In: Proceedings of the 1996 ICMC, San Francisco, pp. 274–277 (1996)

    Google Scholar 

  13. Todd, P., Werner, G.: Frankensteinian methods for evolutionary music composition. In: Griffith, N., Todd, P. (eds.) Musical Networks: Parallel Distributed Perception and Performance, pp. 313–339. MIT Press/Bradford Books, Cambridge, MA (1999)

    Google Scholar 

  14. Warburton, D.: A Working Terminology for Minimal Music. Integral 2, 135–159 (1988)

    Google Scholar 

  15. Waschka, R.: Composing with Genetic Algorithms: GenDash. In: Evolutionary Computer Music, pp. 117–136. Springer, London (2007)

    CrossRef  Google Scholar 

  16. Weinberg, G., Godfrey, M., Rae, A., Rhoads, J.: A Real-Time Genetic Algorithm in Human-Robot Musical Improvisation. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) CMMR 2007. LNCS, vol. 4969, pp. 351–359. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eigenfeldt, A., Pasquier, P. (2012). Populations of Populations: Composing with Multiple Evolutionary Algorithms. In: Machado, P., Romero, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2012. Lecture Notes in Computer Science, vol 7247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29142-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29142-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29141-8

  • Online ISBN: 978-3-642-29142-5

  • eBook Packages: Computer ScienceComputer Science (R0)