Skip to main content

Investigating Aesthetic Features to Model Human Preference in Evolutionary Art

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7247)

Abstract

In this paper we investigate aesthetic features in learning aesthetic judgments in an evolutionary art system. We evolve genetic art with our evolutionary art system, BioEAS, by using genetic programming and an aesthetic learning model. The model is built by learning both phenotype and genotype features, which we extracted from internal evolutionary images and external real world paintings, which could lead to more interesting paths. By learning aesthetic judgment and applying the knowledge to evolve aesthetical images, the model helps user to automate the process of evolutionary process. Several independent experimental results show that our system is efficient to reduce user fatigue in evolving art.

Keywords

  • Aesthetic learning
  • evolutionary art
  • interactive evolutionary computation
  • computational aesthetics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-29142-5_14
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-29142-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acebo, E., Mateu, S.: Benford’s law for natural and synthetic images. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics, pp. 169–176. Eurographics Association (2005)

    Google Scholar 

  2. Birkhoff, G.D.: Aesthetic Measure. Harvard University Press (1933)

    Google Scholar 

  3. Ekárt, A., Sharma, D., Chalakov, S.: Modelling Human Preference in Evolutionary Art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 303–312. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  4. Greenfield, G.: On the origins of the term ”computational aesthetics”. In: Computational Aesthetics, pp. 9–12. Eurographics Association (2005)

    Google Scholar 

  5. den Heijer, E., Eiben, A.E.: Using aesthetic measures to evolve art. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  6. den Heijer, E., Eiben, A.E.: Evolving Art Using Multiple Aesthetic Measures. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 234–243. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  7. Hoenig, F.: Defining computational aesthetics. In: Neumann, L., Casasayas, M.S., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics, pp. 13–18. Eurographics Association (2005)

    Google Scholar 

  8. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications. Springer, London (1997)

    MATH  Google Scholar 

  9. Li, Y., Hu, C.J.: Aesthetic Learning in an Interactive Evolutionary Art System. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010, Part II. LNCS, vol. 6025, pp. 301–310. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  10. Lutton, E.: Evolution of fractal shapes for artists and designers. International Journal on Artificial Intelligence Tools 15(4), 651–672 (2006)

    CrossRef  Google Scholar 

  11. Machado, P., Cardoso, A.: Computing Aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  12. Machado, P., Romero, J., Manaris, B.: The art of artificial evolution: A handbook on evolutionary art and music. Experiments in Computational Aesthetics: An Iterative Approach to Stylistic Change in Evolutionary Art 15(2), 381–415 (2009)

    Google Scholar 

  13. Matkovic, K., Neumann, L., Psik, T., Purgathofer, W.: Global contrast factor - a new approach to image contrast. In: Computational Aesthetics, pp. 159–167. Eurographics Association (2005)

    Google Scholar 

  14. Rigau, J., Feixas, M., Sbert, M.: Informational dialogue with van gogh’s paintings. In: Cunningham, D.W., Interrante, V., Brown, P., McCormack, J. (eds.) Computational Aesthetics, pp. 115–122. Eurographics Association (2008)

    Google Scholar 

  15. Ross, B., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: Yen, G.G., Wang, L., Bonissone, P., Lucas, S.M. (eds.) Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 3832–3839. IEEE Press, Vancouver (2006)

    Google Scholar 

  16. Schmidhuber, J.: Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology 30(2), 97–103 (1997)

    Google Scholar 

  17. Sims, K.: Artificial evolution for computer graphics, July28-August 2, pp. 319–328. ACM Press (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Hu, C., Chen, M., Hu, J. (2012). Investigating Aesthetic Features to Model Human Preference in Evolutionary Art. In: Machado, P., Romero, J., Carballal, A. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2012. Lecture Notes in Computer Science, vol 7247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29142-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29142-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29141-8

  • Online ISBN: 978-3-642-29142-5

  • eBook Packages: Computer ScienceComputer Science (R0)