HyFlex: A Benchmark Framework for Cross-Domain Heuristic Search

  • Gabriela Ochoa
  • Matthew Hyde
  • Tim Curtois
  • Jose A. Vazquez-Rodriguez
  • James Walker
  • Michel Gendreau
  • Graham Kendall
  • Barry McCollum
  • Andrew J. Parkes
  • Sanja Petrovic
  • Edmund K. Burke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7245)

Abstract

This paper presents HyFlex, a software framework for the development of cross-domain search methodologies. The framework features a common software interface for dealing with different combinatorial optimisation problems and provides the algorithm components that are problem specific. In this way, the algorithm designer does not require a detailed knowledge of the problem domains and thus can concentrate his/her efforts on designing adaptive general-purpose optimisation algorithms. Six hard combinatorial problems are fully implemented: maximum satisfiability, one dimensional bin packing, permutation flow shop, personnel scheduling, traveling salesman and vehicle routing. Each domain contains a varied set of instances, including real-world industrial data and an extensive set of state-of-the-art problem specific heuristics and search operators. HyFlex represents a valuable new benchmark of heuristic search generality, with which adaptive cross-domain algorithms are being easily developed and reliably compared.This article serves both as a tutorial and a as survey of the research achievements and publications so far using HyFlex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Operations Research/Computer Science Interfaces Series, vol. 45. Springer (2009)Google Scholar
  2. 2.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-Rodriguez, J.A., Gendreau, M.: Iterated local search vs. hyper-heuristics: Towards general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, pp. 3073–3080 (July 2010)Google Scholar
  4. 4.
    Burke, E.K., Gendreau, M., Ochoa, G., Walker, J.D.: Adaptive iterated local search for cross-domain optimisation. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1987–1994. ACM, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)Google Scholar
  6. 6.
    Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: A Classification of Hyper-heuristic Approaches. In: Handbook of Metaheuristics. International Series in Operations Research & Management Science, ch. 15, vol. 146, pp. 449–468. Springer (2010)Google Scholar
  7. 7.
    Chan, C.Y., Xue, F., Ip, W.H., Cheung, C.F.: A hyper-heuristic inspired by pearl hunting. In: International Conference on Learning and Intelligent Optimization (LION 6). LNCS, Springer (to appear, 2012)Google Scholar
  8. 8.
    Cowling, P., Kendall, G., Soubeiga, E.: A Hyperheuristic Approach to Scheduling a Sales Summit. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 176–190. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Curtois, T.: Staff rostering benchmark data sets. Website (2011), http://www.cs.nott.ac.uk/~tec/NRP/
  10. 10.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolutionary Algorithms. In: Parameter Setting in Evolutionary Algorithms, pp. 19–46. Springer (2007)Google Scholar
  11. 11.
    Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme Value Based Adaptive Operator Selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Di Gaspero, L., Urli, T.: A reinforcement learning approach for the cross-domain heuristic search challenge. In: Proceedings of the 9th Metaheuristics International Conference (MIC 2011), Udine, Italy, July 25-28 (2011)Google Scholar
  13. 13.
    Johnson, D., Demers, A., Ullman, J., Garey, M., Graham, R.: Worst-case performance bounds for simple one-dimensional packaging algorithms. SIAM Journal on Computing 3(4), 299–325 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Misir, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for chesc 2011. In: International Conference on Learning and Intelligent Optimization (LION 6). LNCS. Springer (to appear, 2012)Google Scholar
  15. 15.
    Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. OMEGA-International Journal of Management Science 11(1), 91–95 (1983)CrossRefGoogle Scholar
  16. 16.
    Ochoa, G., Hyde, M.: The Cross-domain Heuristic Search Challenge (CHeSC 2011). Website (2011), http://www.asap.cs.nott.ac.uk/chesc2011/
  17. 17.
    Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36(1), 141–152 (2006)CrossRefGoogle Scholar
  18. 18.
    Ozcan, E., Kheiri, A.: A hyper-heuristic based on random gradient, greedy and dominance. In: Proceedings of the 26th International Symposium on Computer and Information Sciences ISCIS 2011, London, UK, July 25-28 (2011)Google Scholar
  19. 19.
    Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers and Operations Research 34, 2403–2435 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ch.17, pp. 529–556. Springer (2005)Google Scholar
  21. 21.
    Smith, J.E.: Co-evolving memetic algorithms: A review and progress report. IEEE Transactions in Systems, Man and Cybernetics, part B 37(1), 6–17 (2007)CrossRefGoogle Scholar
  22. 22.
    Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive iterated local search within the hyflex hyper-heuristic framework. In: International Conference on Learning and Intelligent Optimization (LION 6). LNCS. Springer (to appear, 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gabriela Ochoa
    • 1
  • Matthew Hyde
    • 1
  • Tim Curtois
    • 1
  • Jose A. Vazquez-Rodriguez
    • 1
  • James Walker
    • 1
  • Michel Gendreau
    • 2
  • Graham Kendall
    • 1
  • Barry McCollum
    • 3
  • Andrew J. Parkes
    • 1
  • Sanja Petrovic
    • 1
  • Edmund K. Burke
    • 4
  1. 1.School of Computer ScienceUniversity of NottinghamUK
  2. 2.CIRRELTUniversity of MontrealCanada
  3. 3.School of Electronics and Computer ScienceQueen’s UniversityUK
  4. 4.Department of Computing Science and MathematicsUniversity of StirlingUK

Personalised recommendations