Mechanism of Passive Permeation of Ions and Molecules Through Plant Membranes

  • Alexander G. Volkov
  • Veronica A. Murphy
  • Vladislav S. Markin


The Gibbs free energy of ion and molecule transfer ΔG(tr) from the aqueous phase to a hydrophobic part of a biomembrane can be calculated as a sum of all contributions ΔG(tr) = ΔG(el) + ΔG(hph) + ΔG(si), where ΔG(el) is electrostatic contribution, ΔG(hph) is the hydrophobic effect, and ΔG(si) is determined by specific interactions of the transferred particle (ion, dipole) with solvent molecules, such as hydrogen bond formation, donor–acceptor, and ion–dipole interactions. The electrostatic component of the Gibbs energy of ion transfer from medium w into the medium m was found from conventional Born expression corrected for the image energy in a thin membrane. The hydrophobic contribution to the Gibbs free energy of solute resolvation with surface area S can be calculated using the equation, \( \Updelta G_{s} = - N_{A} S\gamma , \) where γ is the surface tension in the cavity formed by the transferred particle in the media and N A is the Avogadro’s number. A significant point is that the free energy of the hydrophobic effect is opposite in sign to the electrostatic effect. As a result, the sum of electrostatic and hydrophobic components of the Gibbs free energy decreases with a solute size, so that ΔG(tr) > 0 only for small ions. The specific energy of ion/dipolar layer interaction depend on the dipolar membrane surface potential ϕ s as ΔG(si) = −zFϕ s, where ze is the charge of ions and F is the Faraday constant. These calculations yielded the permeability of different ions and neutral molecules through plant membranes in good agreement with experimental data.


Gibbs Energy Permeability Coefficient Membrane Thickness Hydrophobic Effect Image Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the grant CBET-1064160 from the National Science Foundation.


  1. Abramson AA (1981) Surface active compounds. Properties and applications. Khimiya, LeningradGoogle Scholar
  2. Antonow G (1907) Sur la tension superficielle a la limite de deux couches. J Chim Phys 5:372–385Google Scholar
  3. Arakelyan VB, Arakelyan SB (1983) Energetic profile of a dipole molecule in the thin membrane. Biol Zh Armenii 36:775–779Google Scholar
  4. Arakelyan VB, Arakelyan SB, Avakyan TsM, Aslanyan VM (1985) Electrostatic effects on transport of water across bilayer lipid membranes. Biofizika 30:170–171Google Scholar
  5. Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1:54–60CrossRefGoogle Scholar
  6. Bell RP (1932) The electrical energy of dipole molecules in solution and solubilities of ammonia, hydrogen chloride, and hydrogen sulfite in various solvents. J Chem Soc 32:1371–1382Google Scholar
  7. Bellaloui N, Brown PH, Dandekar AM (1999) Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant Physiol 119:735–741PubMedCrossRefGoogle Scholar
  8. Bemporad D, Luttmann C, Essex JW (2004) Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys J 87:1–13 PubMedCrossRefGoogle Scholar
  9. Benga G (1989) Water transport in biological membranes. CRC Press, Boca Raton, pp 41–75Google Scholar
  10. Benjamin I (1993) Mechanism and dynamics of ion transfer across a liquid–liquid interface. Science 261:1558–1560PubMedCrossRefGoogle Scholar
  11. Blandamer MJ, Symons MCR (1963) Significance of new values for ionic radii to solvation phenomena in aqueous solution. J Phys Chem 67:1304–1306CrossRefGoogle Scholar
  12. Born M (1920) Volumen und hydrationswärme der ionen. Z Phys 1:45–48CrossRefGoogle Scholar
  13. Briggs GG, Bromilow RH, Evans AA (1982) Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley. Pestic Sci 13:495–504CrossRefGoogle Scholar
  14. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  15. Chiou CT, Sheng G, Manes M (2001) A partition-limited model of the plant uptake of organic contaminants from soil and water. Environ Sci Technol 35:1437–1444PubMedCrossRefGoogle Scholar
  16. Collander R (1937) The permeability of plant protoplasts to non-electrolytes. Trans Faraday Soc 33:985–990CrossRefGoogle Scholar
  17. Collander R (1941) Selective absorption of cations by higher plants. Plant Physiol 16:691–720PubMedCrossRefGoogle Scholar
  18. Collander R (1949) The permeability of plant protoplasts to small molecules. Physiol Plant 2:300–311CrossRefGoogle Scholar
  19. Collander R (1950) The distribution of organic compounds between iso-butanol and water. Acta Chem Scand 4:1085–1098CrossRefGoogle Scholar
  20. Collander R (1951) The partition of organic compounds between higher alcohols and water. Acta Chem Scand 5:774–780CrossRefGoogle Scholar
  21. Collander R (1954) The permeability of Nitella cells to non-eleetrolytes. Physiol Plant 7:420–445CrossRefGoogle Scholar
  22. Deamer DW, Volkov AG (1995) Proton permeation of lipid bilayers. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca RatonGoogle Scholar
  23. Dogonadze RR, Kornyshev AA (1974) Polar-solvent structure in theory of ion solvation. J Chem Soc, Faraday Trans 2(70):1121–1132Google Scholar
  24. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124:1349–1361PubMedCrossRefGoogle Scholar
  25. Flewelling RF, Hubbell WL (1986a) Hydrophobic ion interactions with membranes: thermodynamic analysis of tetraphenylphosphonium binding to vesicles. Biophys J 49:531–540PubMedCrossRefGoogle Scholar
  26. Flewelling RF, Hubbell WL (1986b) The membrane dipole potential in a total membrane potential model. Biophys J 49:541–552PubMedCrossRefGoogle Scholar
  27. Gawrish K, Ruston D, Zimmerberg J, Parsegian VA, Rand RP, Fuller N (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61:1213–1223CrossRefGoogle Scholar
  28. Gennis RB (1989) Biomembranes: molecular structure and function. Springer Verlag, NYGoogle Scholar
  29. Goldschmidt VM (1926) Geochem Vert Ges der Elemente, OsloGoogle Scholar
  30. Gourary BS, Adrian FS (1960) Wave functions for electron-excess color centers in alkali halide crystals. Solid State Phys 10:127–247CrossRefGoogle Scholar
  31. Grotthus CJT (1806) Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann Chim 58:54–73Google Scholar
  32. Haas K, Schönherr J (1979) Composition of soluble cuticular lipids and water permeability of cuticular membranes from citrus leaves. Planta 146:399–403CrossRefGoogle Scholar
  33. Hamilton RT, Kaler EW (1990a) Alkali metal ion transport through thin bilayers. J Phys Chem 94:2560–2566CrossRefGoogle Scholar
  34. Hamilton RT, Kaler EW (1990b) Facilitated ion transport through thin bilayers. J Membr Sci 54:259–269CrossRefGoogle Scholar
  35. Hsu FC, Marxmiller RL, Yang AYS (1990) Study of root uptake and xylem translocation of cinmethylin and related compounds in detopped soybean roots using a pressure chamber technique. Plant Physiol 93:1573–1578PubMedCrossRefGoogle Scholar
  36. Ikonen M, Murtomaki L, Kontturi K (2007) An electrochemical method for the determination of liposome–water partition coefficients of drugs. J Electroanal Chem 602:189–194CrossRefGoogle Scholar
  37. Kornyshev AA (1981) Nonlocal screening of ions in a structurized polar liquid. New aspects of solvent description in electrolyte theory. Electrochim Acta 26:1–20CrossRefGoogle Scholar
  38. Kornyshev AA, Volkov AG (1984) On the evaluation of standard Gibbs energies of ion transfer between two solvents. J Electroanal Chem 180:363–381CrossRefGoogle Scholar
  39. Ksenzhek OS, Volkov AG (1998) Plant energetics. Academic, San DiegoGoogle Scholar
  40. Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Pergamon, NYGoogle Scholar
  41. Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulation of hydrophobic pores in lipid bilayers. Biophys J 86:2156–2164PubMedCrossRefGoogle Scholar
  42. Macdonald RC (1976) Energetics of permeation of thin lipid membranes by ions. Biochim Biophys Acta 448:193–198PubMedCrossRefGoogle Scholar
  43. Mälkiä A, Murtomäki L, Urtti A, Kontturi K (2004) Drug permeation in biomembranes in vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci 23:13–47PubMedCrossRefGoogle Scholar
  44. Markin VS, Kozlov MM (1985) Pores statistics in bilayer lipid membranes. Biol Membr 2:205–223Google Scholar
  45. Markin VS, Volkov AG (1987a) The standard Gibbs energy of ion resolvation and non-linear dielectric effects. J Electroanal Chem 235:23–40CrossRefGoogle Scholar
  46. Markin VS, Volkov AG (1987b) Theoretical description of Gibbs energy of ion transfer. Russ Chem Rev 56:1953–1972CrossRefGoogle Scholar
  47. Markin VS, Volkov AG (1987c) The standard Gibbs free energy of ion transfer. Sov Electrochem 23:1105–1112Google Scholar
  48. Markin VS, Volkov AG (1989a) Interfacial potentials at the interface between two immiscible electrolyte solutions–some problems in definitions and interpretation. J Colloid Interface Sci 131:382–392CrossRefGoogle Scholar
  49. Markin VS, Volkov AG (1989b) The Gibbs energy of ion transfer between two immiscible liquids. Electrochim Acta 34:93–107CrossRefGoogle Scholar
  50. Markin VS, Volkov AG (1990) Potentials at the interface between two immiscible electrolyte solution. Adv Colloid Interface Sci 31:111–152CrossRefGoogle Scholar
  51. Markin VS, Volkov AG (2004) Distribution potential in small liquid–liquid systems. J Phys Chem B 108:13807–13812CrossRefGoogle Scholar
  52. Markin VS, Volkov AG, Jovanov E (2008) Active movements in plants: mechanism of trap closure by Dionaea muscipula ellis. Plant Signal Behav 3:778–783PubMedCrossRefGoogle Scholar
  53. Marrink SJ, Berendsen HCJ (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100:16729–16738CrossRefGoogle Scholar
  54. Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168CrossRefGoogle Scholar
  55. Marrink SJ, Jahnig F, Berendsen HJC (1996) Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys J 71:632–647PubMedCrossRefGoogle Scholar
  56. Marschner H (1999) Mineral nutrition of higher plants. Academic, San DiegoGoogle Scholar
  57. Mohr H, Schopfer P (1994) Plant physiology. Springer, BerlinGoogle Scholar
  58. Mueller P, Rudin DO, Ti Tien H, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980PubMedCrossRefGoogle Scholar
  59. Murtomaki L, Manzanares JA, Mafe S, Kontturi K (2001) Phospholipids at liquid–liquid interfaces and their effect on charge transfer. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications, surfactant science series, vol 95. M Dekker, NYGoogle Scholar
  60. Nagle JF, Morowitz HJ (1978) Molecular mechanisms for proton transport in membrane. Proc Natl Acad Sci U S A 75:298–302PubMedCrossRefGoogle Scholar
  61. Nagle JF, Tristram-Nagle S (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol 74:1–14PubMedCrossRefGoogle Scholar
  62. Neumke B, Lauger P (1969) Nonlinear electrical effects in lipid bilayer membranes II. Integration of the generalized Nernst–Plank equations. Biophys J 9:1160–1170CrossRefGoogle Scholar
  63. Nobel PS (1999) Physicochemical and environmental plant physiology. Academic, San DiegoGoogle Scholar
  64. O’Neill SD, Keith B, Rappaport L (1986) Transport of gibberellin A1 in cowpea membrane vesicles. Plant Physiol 80:81–817Google Scholar
  65. Overton E (1895) Über die osmotishen Eigenschaften der lebenden Pflanzen und Tierzelles. Vierteljahrsschr Naturforch Ges Zuerich 40:159–201Google Scholar
  66. Overton E (1899) Über die allgemeinen osmotishen Eigenschaften der Zelle, ihre vermutlichen Ursachen und ihre Bedeutung fur die physiologie. Vierteljahrsschr Naturforch Ges Zuerich 44:88–114Google Scholar
  67. Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348PubMedCrossRefGoogle Scholar
  68. Paula S, Volkov AG, Deamer DW (1998) Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J 74:319–327PubMedCrossRefGoogle Scholar
  69. Pauling L (1927) The sizes of ions and the structure of ionic crystals. J Amer Chem Soc 49:765–790CrossRefGoogle Scholar
  70. Pohorille A, Wilson MA (1996) Excess chemical potential of small solutes across water-membrane and water-hexane interfaces. J Chem Phys 104:3760–3773PubMedCrossRefGoogle Scholar
  71. Poznansky M, Tong S, Perrin WC, Milgram JM, Solomon AK (1976) Nonelectrolyte diffusion across lipid bilayer systems. J Gen Physiol 67:45–66PubMedCrossRefGoogle Scholar
  72. Ray P (1960) On the theory of osmotic water movement. Plant Physiol 35:783–795PubMedCrossRefGoogle Scholar
  73. Rusanov AI, Dukhin SS, Yaroshchuk AE (1984) Problem of the surface layer in liquid mixtures and the electric double layer. Kolloidnyi Zh 46:490–494Google Scholar
  74. Rusanov AI, Kuni FM (1982) Theory of nucleation on charged nuclei 1. General thermodynamic relationships. Kolloidnyi Zh 44:934–941Google Scholar
  75. Sisskind B, Kasarnowsky J (1933) Studying of gases solubilities 2. The solubility of argon. Zh Fiz Khim 4:683–690Google Scholar
  76. Taiz L, Zeiger E (1999) Plant physiology. Sinauer Associates, SunderlandGoogle Scholar
  77. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes. Wiley, NYGoogle Scholar
  78. Tien TH (1974) Bilayer lipid membranes (BLM) theory and practice. M Dekker, NYGoogle Scholar
  79. Tien TH, Ottova-Leitmannova A (2000) Membrane biophysics as viewed from experimental bilayer lipid membranes. Elsevier, AmsterdamGoogle Scholar
  80. Tolman R (1949) The effect of droplet size on surface tension. J Chem Phys 17:333–337CrossRefGoogle Scholar
  81. Trapp S (2000) Modeling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag Sci 56:767–778CrossRefGoogle Scholar
  82. Trapp S (2004) Plant uptake and transport models for neutral and ionic chemicals. Environ Sci Pollut Res 11(1):33–39CrossRefGoogle Scholar
  83. Tyerman SD, Steudle E (1984) Determination of solute permeability in Chara internodes by a turgor minimum method. Plant Physiol 74:464–468PubMedCrossRefGoogle Scholar
  84. Uhlig HH (1937) The solubilities of gases and surface tension. J Phys Chem 41:1215–1225CrossRefGoogle Scholar
  85. Volkov AG (1989) Oxygen evolution in the course of photosynthesis. Bioelectrochem Bioenerg 21:3–24CrossRefGoogle Scholar
  86. Volkov AG (1996) Potentials of thermodynamic and free zero charge at the interface between two immiscible electrolytes. Langmuir 12:3315–3319CrossRefGoogle Scholar
  87. Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156CrossRefGoogle Scholar
  88. Volkov AG (ed) (2001) Liquid interfaces in chemical, biological, and pharmaceutical applications, surfactant science series, vol 95. M Dekker, NYGoogle Scholar
  89. Volkov AG (ed) (2003) Interfacial catalysis. M Dekker, NYGoogle Scholar
  90. Volkov AG (ed) (2006) Plant electrophysiology. Springer, BerlinGoogle Scholar
  91. Volkov AG (2008a) Gibbs energy of ion and dipole transfer. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, p 305Google Scholar
  92. Volkov AG (2008b) Ion transport through membranes and ion channels. In: Bard AJ, Inzelt G, Scholz F (eds) Electrochemical dictionary. Springer, Berlin, pp 369–370Google Scholar
  93. Volkov AG, Adesina T, Markin VS, Jovanov E (2008a) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702PubMedCrossRefGoogle Scholar
  94. Volkov AG, Adesina T, Markin VS, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–144PubMedCrossRefGoogle Scholar
  95. Volkov AG, Baker K, Foster JC, Clemmons J, Jovanov E, Markin VS (2011a) Circadian variations in biologically closed electrochemical circuits in Aloe vera and Mimosa pudica. Bioelectrochem 81:39–45CrossRefGoogle Scholar
  96. Volkov AG, Carrell H, Adesina T, Markin VS, Jovanov E (2008b) Plant electrical memory. Plant Signal Behav 3:490–492PubMedCrossRefGoogle Scholar
  97. Volkov AG, Carrell H, Baldwin A, Markin VS (2009a) Electrical memory in Venus flytrap. Bioelectrochem 75:142–147CrossRefGoogle Scholar
  98. Volkov AG, Carrell H, Markin VS (2009b) Biologically closed electrical circuits in Venus flytrap. Plant Physiol 149:1661–1667PubMedCrossRefGoogle Scholar
  99. Volkov AG, Coopwood KJ, Markin VS (2008c) Inhibition of the Dionaea muscipula ellis trap closure by ion and water channels blockers and uncouplers. Plant Sci 175:642–649CrossRefGoogle Scholar
  100. Volkov AG, Deamer DW (1994) Mechanisms of the passive ion permeation of lipid bilayers: partition or transient aqueous pores. In: Allen MJ, Cleary SF, Sowers AE (eds) Charge and field effects in biosystems-4. World Scientific, SingaporeGoogle Scholar
  101. Volkov AG, Deamer DW, Tanelian DI, Markin VS (1997a) Liquid interfaces in chemistry and biology. Wiley, NYGoogle Scholar
  102. Volkov AG, Foster JC, Ashby TA, Walker RK, Johnson JA, Markin VS (2010a) Mimosa pudica: electrical and mechanical stimulation of plant movements. Plant Cell Environ 33:163–173PubMedCrossRefGoogle Scholar
  103. Volkov AG, Foster JC, Baker KD, Markin VS (2010b) Mechanical and electrical anisotropy in Mimosa pudica. Plant Signal Behav 5:1211–1221PubMedCrossRefGoogle Scholar
  104. Volkov AG, Foster JC, Markin VS (2010c) Molecular electronics in pinnae of Mimosa pudica. Plant Signal Behav 5:826–831PubMedCrossRefGoogle Scholar
  105. Volkov AG, Foster JC, Markin VS (2010d) Signal transduction in Mimosa pudica: biologically closed electrical circuits. Plant Cell Environ 33:816–827PubMedCrossRefGoogle Scholar
  106. Volkov AG, Foster JC, Markin VS (2011b) Anisotropy and nonlinear properties of electrochemical circuits in leaves of Aloe vera L. Bioelectrochem 81:4–9CrossRefGoogle Scholar
  107. Volkov AG, Wooten JD, Waite AJ, Brown CR, Markin VS (2011c) Circadian rhythms in electrical circuits of Clivia miniata. J Plant Physiol 168:1753–1760PubMedCrossRefGoogle Scholar
  108. Volkov AG, Kornyshev AA (1985) Dependence of the free Gibbs energy of resolvation during ion transfer from one solvent to another on the ion size. Sov Electrochem 21:814–817Google Scholar
  109. Volkov AG, Markin VS (2002) Electrochemical double layers: liquid–liquid interfaces. In: Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry: thermodynamics of electrified interfaces, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  110. Volkov AG, Paula S, Deamer DW (1997b) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 42:153–160CrossRefGoogle Scholar
  111. Volkov AG, Pinnock MR, Lowe DC, Gay MS, Markin VS (2011d) Complete hunting cycle of dionaea muscipula: consecutive steps and their electrical properties. J Plant Physiol 168:109–120PubMedCrossRefGoogle Scholar
  112. Vorotyntsev MA, Kornyshev AA (1993) Electrostatics of a medium with the spatial dispersion. Nauka, MoscowGoogle Scholar
  113. Waddington TC (1966) Ionic radii and the method of the undetermined parameter. Trans Faraday Soc 62:1482–1492CrossRefGoogle Scholar
  114. Wilson MA, Pohorille A (1996) Mechanism of unassisted ion transport across membrane bilayers. J Am Chem Soc 118:6580–6587PubMedCrossRefGoogle Scholar
  115. Zahn D, Brickmann J (2001) Quantum-classical simulation of proton transport via a phospholipid bilayer. Phys Chem Chem Phys 3:848–852CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander G. Volkov
    • 1
  • Veronica A. Murphy
    • 1
  • Vladislav S. Markin
    • 2
  1. 1.Department of ChemistryOakwood UniversityHuntsvilleUSA
  2. 2.Department of NeurologyUniversity of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations