A Lower Bound on Deterministic Online Algorithms for Scheduling on Related Machines without Preemption

  • Tomáš Ebenlendr
  • Jiří Sgall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7164)


We prove a new lower bound of 2.564 on deterministic online algorithms for makespan scheduling on related machines (without preemptions). Previous lower bound was 2.438 by Berman et al. We use an analytical bound on maximal frequency of scheduling jobs instead of the combinatorial bound obtained by computer based search through the graph of possible states of an algorithm in the previous work.


Competitive Ratio Online Algorithm List Schedule Online Schedule Common Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing with applications to machine scheduling and virtual circuit routing. J. ACM 44, 486–504 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Azar, Y.: On-line Load Balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bar-Noy, A., Freund, A., Naor, J.: New algorithms for related machines with temporary jobs. J. Sched. 3, 259–272 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berman, P., Charikar, M., Karpinski, M.: On-line Load Balancing for Related Machines. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 116–125. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. J. Algorithms 35, 108–121 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cho, Y., Sahni, S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9, 91–103 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ebenlendr, T.: Combinatorial algorithms for online problems: Semi-online scheduling on related machines. PhD thesis, Charles University, Prague (2011)Google Scholar
  8. 8.
    Ebenlendr, T., Jawor, W., Sgall, J.: Preemptive online scheduling: Optimal algorithms for all speeds. Algorithmica 53, 504–522 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Epstein, L., Noga, J., Seiden, S.S., Sgall, J., Woeginger, G.J.: Randomized on-line scheduling for two uniform machines. J. Sched. 4, 71–92 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Epstein, L., Sgall, J.: A lower bound for on-line scheduling on uniformly related machines. Oper. Res. Lett. 26, 17–22 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomáš Ebenlendr
    • 1
  • Jiří Sgall
    • 2
  1. 1.Institute of MathematicsAS CRPraha 1Czech Republic
  2. 2.Dept. of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic

Personalised recommendations