Advertisement

Single Approximation for Biobjective Max TSP

  • Cristina Bazgan
  • Laurent Gourvès
  • Jérôme Monnot
  • Fanny Pascual
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7164)

Abstract

We propose an algorithm which returns a single Hamiltonian cycle with performance guarantee on both objectives. The algorithm is analysed in three cases. When both (resp. at least one) objective function(s) fulfill(s) the triangle inequality, the approximation ratio is \(\frac{5}{12}-\varepsilon\approx 0.41\) (resp. \(\frac{3}{8}-\varepsilon\)). When the triangle inequality is not assumed on any objective function, the algorithm is \(\frac{1+2\sqrt{2}}{14} -\varepsilon\approx 0.27\)-approximate.

Keywords

Polynomial Time Triangle Inequality Travel Salesman Problem Minimum Weight Hamiltonian Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, E., Bampis, E., Fishkin, A.V.: A note on scheduling to meet two min-sum objectives. Operations Research Letters 35(1), 69–73 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Angel, E., Bampis, E., Gourvès, L.: Approximating the Pareto curve with local search for the bicriteria TSP(1,2) problem. Theoretical Computer Science 310(1-3), 135–146 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Angel, E., Bampis, E., Gourvès, L.: Approximation algorithms for the bi-criteria weighted max-cut problem. Discrete Applied Mathematics 154(12), 1685–1692 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Angel, E., Bampis, E., Gourvès, L., Monnot, J.: (Non)-Approximability for the Multi-criteria TSP(1,2). In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 329–340. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Angel, E., Bampis, E., Kononov, A.: On the approximate tradeoff for bicriteria batching and parallel machine scheduling problems. Theoretical Computer Science 306(1-3), 319–338 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and budgeted matroid intersection via the gasoline puzzle. Mathematical Programming 128(1-2), 355–372 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bläser, M., Manthey, B., Putz, O.: Approximating Multi-criteria Max-TSP. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 185–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for max TSP. Information Processing Letters 95(2), 333–342 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ehrgott, M.: Multicriteria Optimization. LNEMS. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  10. 10.
    Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multiobjective knapsack problems. Management Science 48(12), 1603–1612 (2002)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hong, S.-P., Chung, S.-J., Park, B.H.: A fully polynomial bicriteria approximation scheme for the constrained spanning tree problem. Operations Research Letters 32(3), 233–239 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kowalik, L., Mucha, M.: Deterministic 7/8-approximation for the metric maximum TSP. Theoretical Computer Science 410(47-49), 5000–5009 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Manthey, B.: Multi-Criteria TSP: Min and Max Combined. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 205–216. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Manthey, B.: On approximating multi-criteria TSP. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 637–648 (2009)Google Scholar
  15. 15.
    Manthey, B.: Deterministic Algorithms for Multi-criteria TSP. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 264–275. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Manthey, B., Shankar Ram, L.: Approximation algorithms for multi-criteria Traveling Salesman Problems. Algorithmica 53(1), 69–88 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Paluch, K., Mucha, M., Mądry, A.: A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 86–92 (2000)Google Scholar
  19. 19.
    Rasala, A., Stein, C., Torng, E., Uthaisombut, P.: Existence theorems, lower bounds and algorithms for scheduling to meet two objectives. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 723–731 (2002)Google Scholar
  20. 20.
    Ravi, R., Goemans, M.X.: The Constrained Minimum Spanning Tree Problem. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Many birds with one stone: multi-objective approximation algorithms. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC 1993), pp. 438–447 (1993)Google Scholar
  22. 22.
    Stein, C., Wein, J.: On the existence of schedules that are near-optimal for both makespan and total weighted completion time. Operations Research Letters 21(3), 115–122 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Cristina Bazgan
    • 1
    • 2
    • 3
  • Laurent Gourvès
    • 1
    • 2
  • Jérôme Monnot
    • 1
    • 2
  • Fanny Pascual
    • 4
  1. 1.LAMSADEUniversité Paris-DauphineParis Cedex 16France
  2. 2.CNRSUMR 7243France
  3. 3.Institut Universitaire de FranceFrance
  4. 4.LIP6Université Pierre et Marie CurieParisFrance

Personalised recommendations