Advertisement

Approximation Algorithms for Fragmenting a Graph against a Stochastically-Located Threat

  • David B. Shmoys
  • Gwen Spencer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7164)

Abstract

Motivated by issues in allocating limited preventative resources to protect a landscape against the spread of a wildfire from a stochastic ignition point, we give approximation algorithms for a new family of stochastic optimization problems.

Keywords

Approximation Algorithm Edge Cost Fuel Treatment Ignition Point Stage Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Engelberg, R., Könemann, J., Leonardi, S., Naor, J(S.): Cut Problems in Graphs with a Budget Constraint. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 435–446. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Finney, M.A.: A computational method for optimising fuel treatment locations. International Journal of Wildland Fire 16, 702–711 (2007)CrossRefGoogle Scholar
  4. 4.
    Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced Graph Cuts. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Räcke, H.: Optimal hierarchical decompositions for congestion minimization in networks. In: 40th STOC, pp. 255–264 (2008)Google Scholar
  6. 6.
    Shmoys, D., Spencer, G.: Full paper: Approximation algorithms for fragmenting a graph against a stochastically-located threat, http://people.orie.cornell.edu/gms39/images/documents/gsfragment.pdf
  7. 7.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters 32, 41–43 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wei, Y., Rideout, D., Kirsch, A.: An opt. model for locating fuel treatments across a landscape to reduce expected fire losses. Can. J. of Forest Res. 38, 868–877 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David B. Shmoys
    • 1
  • Gwen Spencer
    • 2
  1. 1.School of ORIE and Dept. of Computer ScienceCornell UniversityIthacaUSA
  2. 2.School of ORIECornell UniversityIthacaUSA

Personalised recommendations