The Telegraph Plant: Codariocalyx motorius (Formerly Also Desmodium gyrans)

  • Anders Johnsson
  • Vijay K. Sharma
  • Wolfgang Engelmann

Abstract

The telegraph plant (Codariocalyx motorius) has drawn much interest among plant physiologists because of its peculiar movements of the leaflets. While the terminal leaflets move from a horizontal position during the day and downward during the night, the lateral leaflets display rhythmic up and down movements in the minute range. The period length of the lateral leaflets is temperature dependent, while that of the terminal leaflet is temperature compensated. The movements of both the leaflets are regulated in the pulvini, a flexible organ between the leaflets and the stalk. Electrophysiological recordings using microelectrodes have revealed the physiological mechanisms underlying the leaflet movements. Early experiments related to effect of mechanical load, light, electric and magnetic fields on the leaflet oscillations by the Indian physicist Bose, and followed up by others, are presented. Experimental approaches are discussed and indicate, that Ca2+, various membrane channels, electric and osmotic mechanisms participate in the oscillating system. Modelling the pulvinus tissue would certainly aid in understanding the signal transduction during the movements. New approaches of modelling the mechanisms could further help in understanding the oscillations in the leaflet movements. Such oscillations might be of much broader relevance than known so far, although not as conspicuous as in the leaflet movements.

Keywords

Guard Cell Terminal Leaflet Leaf Movement Extracellular Potential Motor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem Int Ed 43:4278–4290CrossRefGoogle Scholar
  2. Antkowiak B (1992) Elektrophysiologische Untersuchungen zur Seitenfiederblattbewegung von Desmodium motorium. PhD thesis, University of Tübingen, GermanyGoogle Scholar
  3. Antkowiak B, Engelmann W (1989) U1tradian rhythms in the pulvini of Desmodium gyrans: an electrophysiological approach. J Interdiscip Cycle Res 20:164–165Google Scholar
  4. Antkowiak B, Engelmann W (1995) Oscillations of apoplasmic K+ and H+ activities in Desmodium motorium (Houtt) merril. Pulvini in relation to the membrane potential of motor cells and leaflet movements. Planta 196:350–356CrossRefGoogle Scholar
  5. Antkowiak B, Engelmann W, Herbjørnsen R, Johnsson A (1992) Effects of vanadate, N2 and light on the membrane potential of motor cells and the lateral leaflet movements of Desmodium motorium. Physiol Plant 86:551–558CrossRefGoogle Scholar
  6. Antkowiak B, Mayer W-E, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motorium. J Exp Bot 42:901–910CrossRefGoogle Scholar
  7. Antonsen F (1998) Biophysical studies of plant growth movements in microgravity and under 1 g conditions. Doctoral thesis, Norwegian University of Science and Technology, Trondheim, NorwayGoogle Scholar
  8. Aridor M, Sagi-Eisenberg R (1990) Neomycin is a potent secretagogue of mast cells that directly activates a GTP-binding protein involved in exocytosis. J Cell Biol 111:2885–2891PubMedCrossRefGoogle Scholar
  9. Aschoff J (1991) Hufeland’s interest in plant movements. Chronobiol 18:75–78Google Scholar
  10. Baikie ID, Smith PJS, Porterfield DM, Estrup PJ (1999) Mulitiple scanning bio-Kelvin probe. Rev Sci Instrum 70:1842–1850CrossRefGoogle Scholar
  11. Baluska F (2010) Recent surprising similarities between plant cells and neurons. Plant Signal Behav 5:87–89PubMedCrossRefGoogle Scholar
  12. Baluska F, Schlicht M, Volkmann D, Mancuso S (2008) Vesicular secretion of auxin: evidences and implications. Plant Signal Behav 3:254–256PubMedCrossRefGoogle Scholar
  13. Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111PubMedCrossRefGoogle Scholar
  14. Bauréus Koch CL, Sommarin M, Persson BR, Salford LG, Eberhardt JL (2003) Interaction between weak low frequency magnetic fields and cell membranes. Bioelectromagnetics 24:395–402PubMedCrossRefGoogle Scholar
  15. Berg AR, Peacock K (1992) Growth patterns in nutating and nonnutating sunflower (Helianthus annuus) hypocotyls. Am J Bot 79:77–85CrossRefGoogle Scholar
  16. Bose JC (1913) Researches on irritability of plants. Longmans, Green and Co. London, NY, Bombay, Calcutta, LondonCrossRefGoogle Scholar
  17. Bose JC (1919) Life movements in plants. Trans Bose Inst, pp 255–597Google Scholar
  18. Bose JC (1926) The nervous mechanisms of plants. Longmans, Green and Co., LondonGoogle Scholar
  19. Bose JC (1928) The motor mechanism of plants. Longmans, Green and Co., London Google Scholar
  20. Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Volkenburgh EV (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 1:413–419CrossRefGoogle Scholar
  21. Chen J-P (1996) Untersuchungen zur ultradianen Seitenfiederbewegung von Desmodium motorium und zu diffusiv gekoppelten Ca2+-Oszillatoren. PhD thesis, University of Tübingen, GermanyGoogle Scholar
  22. Chen J-P, Eichelmann C, Engelmann W (1997) Substances interfering with phosphatidyl inositol signalling pathway affect ultradian rhythm of Desmodium motorium. J Biosc 22:465–476CrossRefGoogle Scholar
  23. Chen J-P, Engelmann W, Baier G (1995) Nonlinear dynamics in the ultradian rhythm of Desmodium motorium. Z Naturf 50:1113–1116Google Scholar
  24. Chrispeels MJ, Holuigue L, Latorre R, Luan S, Orellana A, Peña-Cortes H, Raikhel NV, Ronald PC, Trewavas A (1999) Signal transduction networks and the biology of plant cells. Biol Res 32:35–60PubMedGoogle Scholar
  25. Cihlar J (1965) Der Einfluss vorübergehender Temperaturänderungen auf Erregungsvorgänge bei Staubgefässen und bei Desmodium gyrans. PhD thesis, University of Tübingen, GermanyGoogle Scholar
  26. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861PubMedCrossRefGoogle Scholar
  27. Cosgrove DJ, Li LC, Cho HT, Hoffman-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444PubMedCrossRefGoogle Scholar
  28. Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153PubMedCrossRefGoogle Scholar
  29. Coté GG (1995) Signal transduction in leaf movement. Plant Physiol 109:729–734PubMedGoogle Scholar
  30. Das GP (1932) Comparative studies of the effect of drugs on the rhythmic tissues of animal and plant. Trans Bose Res Inst 8:146Google Scholar
  31. Davies E (1987a) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631CrossRefGoogle Scholar
  32. Davies E (1987b) The biochemistry of plants. Academic 12:243–264Google Scholar
  33. Dupont G, Berridge MJ, Goldbeter A (1991) Signal-induced Ca2+ oscillations: properties of a model based on Ca2+-induced Ca2+ release. Cell Calcium 12:73–85PubMedCrossRefGoogle Scholar
  34. Durachko DM, Cosgrove DJ (2009) Measuring plant wall extension (creep) induced by acidic pH and by alpha-expansin. J Vis Exp 25:1263 PubMedGoogle Scholar
  35. Dutt BK, Guhathakurta A (1996) Effect of application of load on the pulsatory movement of the leaflet of Desmodium gyrans. Trans Bose Res Inst 29:105–117Google Scholar
  36. Dwight JS (1839) Select minor poems from the German of Goethe and Schiller with notes (specimens of foreign standard literature). Hilliard, Gray and Company, Boston, p 403Google Scholar
  37. Ellingsrud S, Johnsson A (1993) Perturbations of plant leaflet rhythms caused by electromagnetic radiofrequency radiation. Bioelectromagnetics 14:257–271PubMedCrossRefGoogle Scholar
  38. Engelberth J (2003) Mechanosensing and signal transduction in tendrils. Adv Space Res 32:1611–1619PubMedCrossRefGoogle Scholar
  39. Engelmann W (1996) Leaf movement rhythms as hands of biological docks. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on biorhythmicity. University of Geneva, Geneva, pp 51–76Google Scholar
  40. Engelmann W, Antkowiak B (1998) Ultradian rhythms in Desmodium (minireview). Chronobiol Internat 15:293–307CrossRefGoogle Scholar
  41. Engelmann W, Simon K, Phen CJ (1992) Leaf movement rhythm in Arabidopsis thaliana. Z Naturf 47C:925–928Google Scholar
  42. Felle H (1988) Auxin causes oscillations of cytosolic free calcium and pH in Zea mays coleoptiles. Planta 174:495–499CrossRefGoogle Scholar
  43. Findlay GP (2001) Membranes and the electrophysiology of turgor regulation. Aust J Plant Physiol 28:617–634Google Scholar
  44. Fostad OK (1994) Konstruksjon av strømpulsgenerator. Strømperturberingseksperiment og matematisk modellering/simulering i studier av oscillative bladbevegelser. Master thesis, University of Trondheim, NorwayGoogle Scholar
  45. Fostad OK, Johnsson A, Engelmann W (1997) Effects of electrical currents on Desmodium gyrans leaflet movements. Experiments using a current clamp technique. Biol Rhythm Res 28:244–259CrossRefGoogle Scholar
  46. Fromm J, Eschrich W (1990) Seismonastic movements in Mimosa. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 25–43Google Scholar
  47. Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257PubMedCrossRefGoogle Scholar
  48. Ginzo HD, Decima EE (1995) Weak static magnetic fields increase the speed of circumnutation in cucumber (Cucumis sativus L.) tendrils. Experientia 51:1090–1093CrossRefGoogle Scholar
  49. Glass L, Mackey MC (1988) From clocks to chaos: the rhythms of life. Princeton University Press, Princeton Google Scholar
  50. Goldbeter A (1996) Biochemical oscillations and cellular rhythms. The molecular bases of periodic and chaotic behaviour. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Goldbeter A, Dupont G, Berridge MJ (1990) Minimal model for signal-induced Ca2+- oscillations and for their frequency encoding through protein phosphorylation. Proc Nat Acad Sci USA 87:1461–1465PubMedCrossRefGoogle Scholar
  52. Gorton HL (1987) Water relations in pulvini from Samanea saman. I. Intact pulvini. Plant Physiol 83:945–950PubMedCrossRefGoogle Scholar
  53. Gorton GL (1990) Stomates and pulvini: a comparison of two rhythmic turgor-mediated movement systems. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 223–237Google Scholar
  54. Gradmann D (2001) Model for oscillations in plants. Aust J Plant Physiol 28:577–590Google Scholar
  55. Gradmann D, Buschmann P (1996) Electrocoupling causes oscillations of ion transporters in plants. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on biorhythmicity. University of Geneva, Geneva, pp 239–269Google Scholar
  56. Grassi C, D’Ascenzo M, Torsello A et al (2004) Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 35:307–315PubMedCrossRefGoogle Scholar
  57. Guevara MR, Glass L (1982) Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: a theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J Math Biol 14:1–23PubMedCrossRefGoogle Scholar
  58. Guhathakurta A, Dutt BK (1961) Electrical correlate of the rhythmic pulsatory movement of Desmodium gyrans. Trans Bose Res Inst 24:73–82Google Scholar
  59. Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505PubMedCrossRefGoogle Scholar
  60. Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52:147–160PubMedCrossRefGoogle Scholar
  61. Hufeland W (1790) Über die Bewegung des Hedysarum gyrans und die Wirkung der Elektrizität auf dasselbe. Magazin für das Neueste aus der Physik und Naturgeschichte 6:5–27 (was published as anonymous, but traced to Hufeland)Google Scholar
  62. Iino M, Long C, Wang XJ (2001) Auxin- and abscisic acid-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1219–1227PubMedCrossRefGoogle Scholar
  63. Janse MJ (2003) A brief history of sudden cardiac death and its therapy. Pharmacol Ther 100:89–99PubMedCrossRefGoogle Scholar
  64. Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000) The role of aquaporins in cellular and whole plant water balance. Biochim Biophys Acta 1465:324–342PubMedCrossRefGoogle Scholar
  65. Johnsson A (1997) Circumnutations: Results from recent experiments on earth and in space. Planta 203(Suppl.):S147–S158PubMedCrossRefGoogle Scholar
  66. Johnsson A, Bostrøm AC, Pedersen M (1993) Perturbation of the Desmodium leaflet oscillation by electric current pulses. J Interdisc Cycle Res 24:17–32CrossRefGoogle Scholar
  67. Johnsson A, Brogårdh T, Holje Ø (1979) Oscillatory transpiration of Avena plants: perturbation experiments provide evidence for a stable point of singularity. Physiol Plant 45:393–398CrossRefGoogle Scholar
  68. Johnsson A, Karlsson HG (1972) A feedback model for biological rhythms. I. Mathematical description and basic properties of the model. J Theor Biol 36:153–174PubMedCrossRefGoogle Scholar
  69. Johnsson A, Solheim GB, Iversen T-H (2009) Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: results from a space experiment. New Phytol 182:621–629PubMedCrossRefGoogle Scholar
  70. Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol (Oxf) 187:169–176CrossRefGoogle Scholar
  71. Karlsson HG, Johnsson A (1972) A feedback model for biological rhythms. II. Comparisons with experimental results, especially on the petal rhythm of Kalanchoë. J Theor Biol 36:175–194PubMedCrossRefGoogle Scholar
  72. Kastenmeier B, Reich W, Engelmann W (1977) Effect of alcohols on the circadian petal movement of Kalanchoë and the rhythmic movement of Desmodium. Chronobiol 4:122Google Scholar
  73. Kim HY, Coté GG, Crain RC (1992) Effects of light on the membrane potential of protoplasts from Samanea saman pulvini. Involvement of K+ channels and the H+ ATPase. Plant Physiol 99:1532–1539PubMedCrossRefGoogle Scholar
  74. Kim HY, Coté GG, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by phytochrome and the biological clock. Science 260:960–962PubMedCrossRefGoogle Scholar
  75. Kim HY, Coté GG, Crain RC (1996) Inositol 1,4,5-triphosphate may mediate closure of K+ channels by light and darkness in Samanea saman motor cells. Planta 198:279–287PubMedCrossRefGoogle Scholar
  76. Konrad KR, Hedrich R (2008) The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells. Plant J 55:161–173PubMedCrossRefGoogle Scholar
  77. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego. ISBN 0-12-425060-2Google Scholar
  78. Kraus M, Wolf B, Wolf B (1996) Cytoplasmic calcium oscillations. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on Biorhythmicity. University of Geneva, Geneva, pp 213–237Google Scholar
  79. Kuznetsov OA, Hasenstein KH (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198:87–94PubMedCrossRefGoogle Scholar
  80. Lewis RD, Silyn-Roberts H (1987) Entrainment of the ultradian leaf movement rhythm of Desmodium gyrans by temperature cycles. J Interdiscipl Cycle Res 18:193–203CrossRefGoogle Scholar
  81. Lindström E, Lindström P, Berglund A, Lundgren E, Hansson Mild K (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16:41–47PubMedCrossRefGoogle Scholar
  82. MacRobbie EAC (1998) Signal transduction and ion channels in guard cells. Philos Trans R Soc London B Biol Sci 353:1475–1488PubMedCrossRefGoogle Scholar
  83. Maurel C (2007) Plant aquaporins: novel functions and regulation properties. FEBS Lett 581:2227–2236PubMedCrossRefGoogle Scholar
  84. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefGoogle Scholar
  85. Mayer WE (1990) Walls as potassium storage reservoirs in Phaseolus pulvini. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 160–174Google Scholar
  86. McCreary CR, Dixon SJ, Fraher LJ et al (2006) Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field exposure and evaluation of the role of cell cycle. Bioelectromagnetics 27:354–364PubMedCrossRefGoogle Scholar
  87. Menge C (1991) Die Wirkung von Ca2+, Ca2+-Chelatbildern, Ca2+-Kanalblockern, Calmodulinantagonisten und des Ca2+-Ionophors A23187 auf die ultradiane Rhythmik der Seitenfiederbewegung von Desmodium motorium. Diploma Thesis, Universität Tübingen, GermanyGoogle Scholar
  88. Mitsuno T (1987) Volume change in the motor cells of pulvinule of lateral leaflets of Codariocalyx motorius. Bull Kyoritsu Woman’s Univ 33:115–124Google Scholar
  89. Mitsuno T, Sibaoka T (1989) Rhythmic electric potential change of motor pulvinus in lateral leaflet of Codariocalyx motorius. Plant Cell Physiol 30:1123–1127Google Scholar
  90. Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65:309–318PubMedCrossRefGoogle Scholar
  91. Moran N (1990) The role of ion channels in osmotic volume changes in Samanea motor cells analyzed by patch-clamp methods. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, pp 142–159Google Scholar
  92. Moran N (2007) Osmoregulation of leaf motor cells. FEBS Lett 581:2337–2347PubMedCrossRefGoogle Scholar
  93. Moshelion M, Becker D, Biela A et al (2002a) Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell 14:727–739PubMedCrossRefGoogle Scholar
  94. Moshelion M, Becker D, Czempinski K et al (2002b) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642PubMedCrossRefGoogle Scholar
  95. Neugebauer A (2002) Dreidimensionale Registrierung circadianer und ultradianer Wachstumsvorgänge des Hypokotyls von Arabidopsis thaliana und Cardaminopsis arenosa. PhD thesis University of Tübingen, GermanyGoogle Scholar
  96. Nobel PS (1974) Biophysical plant physiology. Freeman and Company, San Fransisco. ISBN 0-7187-0592-3Google Scholar
  97. Ohashi H (1973) The Asiatic species of Desmodium and its allied genera. Ginkgoana 1:1–318Google Scholar
  98. Okada T, Miyazaki T, Ishii N, Fukushima T, Honda N (2005) Effect of the magnetic field of 50 Hz on the circumnutatiomn of the stem of Arabidopsis thaliana. Bull Maebashi Inst Technol 8:137–142Google Scholar
  99. Pandey S, Zhang W, Assman SM (2007) Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 581:2325–2336PubMedCrossRefGoogle Scholar
  100. Pazur A, Rassadina V (2009) Transient effects of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. BMC Plant Biol 9:47PubMedCrossRefGoogle Scholar
  101. Pedersen M, Johnsson A, Herbjørnsen R (1990) Rhythmic leaf movements under physical loading of the leaves. Z Naturf 45c:859–862Google Scholar
  102. Pickard BG (1973) Action potentials in plants. Bot Rev 39:172–201CrossRefGoogle Scholar
  103. Porterfield DM (2007) Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing. Biosens Bioelectron 22:1186–1196PubMedCrossRefGoogle Scholar
  104. Rober-Kleber N, Albrechtovà JTB, Fleig S et al (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312PubMedCrossRefGoogle Scholar
  105. Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155PubMedCrossRefGoogle Scholar
  106. Rosen AD (2003) Effect of 125 mT static magnetic field on the kinetics of voltage activated Na+ channels in GH3 cells. Bioelectromagnetics 24:517–523PubMedCrossRefGoogle Scholar
  107. Ross EM, Higashijima T (1994) Regulation of G-protein activation by mastoparans and other cationic peptides. Methods Enzymol 237:26–37PubMedCrossRefGoogle Scholar
  108. Roux D, Faure C, Bonnet P et al (2008) A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field. Plant Signal Behav 3:383–385PubMedCrossRefGoogle Scholar
  109. Satter RL, Galston AW (1971) Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174:518–520PubMedCrossRefGoogle Scholar
  110. Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Physiol 32:83–110CrossRefGoogle Scholar
  111. Satter RL, Gorton HL, Vogelmann TC (1990) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, RockvilleGoogle Scholar
  112. Satter RL, Morse MI, Lee Y, Crain RC, Cote G, Moran N (1988) Light-and clock-controlled leaflet movements in Samanea saman: a physiological, biophysical and biochemical analysis. Bot Acta 101:205–213Google Scholar
  113. Schuster S, Marhl M, Höfer T (2002) Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. Eur J Biochem 269:1333–1355PubMedCrossRefGoogle Scholar
  114. Scott BIH (1962) Feedback induced oscillations of five-minute period in the electric field of the bean root. Ann N Y Acad Sc 98:890–900CrossRefGoogle Scholar
  115. Serrano R (1990) Plasma membrane ATPases. In: Larsson C, Moller JM (eds) The plant plasma membrane. Springer, Berlin, pp 127–152Google Scholar
  116. Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of externa1 pH. Plant Physiol 113:111–118PubMedGoogle Scholar
  117. Shabala S, Shabala L, Gradmann D et al (2006) Oscillations in plant membrane transport: model predictions, experimental validation, and physiological implications. J Exp Bot 57:171–184PubMedCrossRefGoogle Scholar
  118. Sharma VK, Bardal TK, Johnsson A (2003) Light-dependent changes in the leaflet movement rhythm of the plant Desmodium gyrans. Z Naturf 58c:81–86Google Scholar
  119. Sharma VK, Engelmann W, Johnsson A (2000) Effects of static magnetic field on the ultradian lateral leaflet movement rhythm in Desmodium gyrans. Z Naturf 55c:638–642Google Scholar
  120. Sharma VK, Jensen C, Johnsson A (2001) Phase response curve for ultradian rhythm of the lateral leaflets in the plant Desmodium gyrans, using DC current pulses. Z Naturf 56c:77–81Google Scholar
  121. Shepherd, VA (1999) Bioelectricity and the rhythms of sensitive plants—the biophysical research of Jagadis Chandra Bose. Curr Sci 77:189–195Google Scholar
  122. Shepherd VA (2005) From semi-conductors to the rhythms of sensitive plants: the research of J.C Bose. Cell Mol Biol 51:607–619PubMedGoogle Scholar
  123. Solberg EE, Embra BI, Börjesson MB et al (2011) Commotio cordis—under-recognized in Europe? A case report and review. Eur J Cardiov Prev R 18:378–383CrossRefGoogle Scholar
  124. Solheim BGB, Johnsson A, Iversen TH (2009) Ultradian rhythms in Arabidopsis thaliana leaves in microgravity. New Phytol 183:1043–1052PubMedCrossRefGoogle Scholar
  125. Strogatz SH (1994) Non-linear dynamics and chaos. Addison-Wesley Publishing Company, Reading MA. ISBN 0201543443Google Scholar
  126. Suh S, Moran N, Lee Y (2000) Blue light activates potassium-efflux channels in flexor cells from Samanea saman motor organs via two mechanisms. Plant Physiol 123:833–843PubMedCrossRefGoogle Scholar
  127. Takahashi K, Isobe M, Muto S (1998) Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1401:339–346PubMedCrossRefGoogle Scholar
  128. Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514PubMedCrossRefGoogle Scholar
  129. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72CrossRefGoogle Scholar
  130. Ul Haque A, Rokkam M, Carlo DAR et al (2007) A MEMS fabricated cell electrophysiology biochip for in silico calcium measurements. Sens Actuator B 123:391–399CrossRefGoogle Scholar
  131. Umrath K (1930) Untersuchungen über Plasma und Plasmaströmungen an Characeen. IV. Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma 9:576–597CrossRefGoogle Scholar
  132. Volkov AG, Adesina T, Jovanov E (2007) Closing of Venus flytrap by electrical stimulation of motor cells. Plant Signal Behav 2:139–145PubMedCrossRefGoogle Scholar
  133. Volkov AG (2006) Plant electrophysiology. Theory and methods. Springer, London. ISBN 978-3-540-32717-2CrossRefGoogle Scholar
  134. Wang XJ, Haga K, Nishizaki Y et al (2001) Blue-light-dependent osmoregulation in protoplasts of Phaseolus vulgaris pulvini. Plant Cell Physiol 42:1363–1372PubMedCrossRefGoogle Scholar
  135. Weber U (1990) Die Rolle von Ionenkanälen und Protonenpumpen bei der rhythmischen Seitenfiederbewegung von Desmodium motoricum. Diploma Thesis, Universität Tübingen, GermanyGoogle Scholar
  136. Weber U, Engelmann W, Mayer WE (1992) Effects of tetraethylammonium chloride (TEA), vanadate, and alkali ions on the lateral leaflet movement rhythm of Des modium motorium (Houtt.) Merr. Chronobiol Int 9:269–277PubMedCrossRefGoogle Scholar
  137. Whitecross MI, Plovanic N (1982) Structure of the motor region of pulvinules of Desmodium gyrans leaflets. Micron 13:337–338Google Scholar
  138. Wildon DC, Thain JF, Minchin PEH et al (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar
  139. Winfree AT (1970) An integrated view of the resetting of a circadian clock. J Theor Biol 28:327–374PubMedCrossRefGoogle Scholar
  140. Winfree A (1971) Corkscrews and singularities in fruitflies: resetting behaviour of the circadian eclosion rhythm. In: Menaker M (ed) Biochronometry. Natl Acad Sci, WashingtonGoogle Scholar
  141. Winfree AT (1987a) The timing of biological clocks. Scientific American Books Inc, NYGoogle Scholar
  142. Winfree AT (1987b) When time breaks down. The three-dimensional dynamics of electrochemical waves and cardiac arrythmias. Princeton University Press, Princeton NJ. ISBN 0-691-02402-2Google Scholar
  143. Winfree AT (2000) Various ways to make phase singularities by electric shock. J Cardiovasc Electrophysiol 11:286–289PubMedCrossRefGoogle Scholar
  144. Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, NY. ISBN 10: 0387989927Google Scholar
  145. Winfree AT (2002) Chemical waves and fibrillating hearts: discovery by computation. J Biosci 27:465–473PubMedCrossRefGoogle Scholar
  146. Zhang W, Fan LM, Wu WH (2007) Osmo-sensitive and strech-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anders Johnsson
    • 1
  • Vijay K. Sharma
    • 2
  • Wolfgang Engelmann
    • 3
  1. 1.Department of PhysicsNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Chronobiology Laboratory, Evolutionary and Organismal Biology UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  3. 3.Botanisches Institut, Universität TübingenTübingenGermany

Personalised recommendations