Skip to main content

Biosystems Analysis of Plant Development Concerning Photoperiodic Flower Induction by Hydro-Electrochemical Signal Transduction

  • Chapter
  • First Online:
Book cover Plant Electrophysiology

Abstract

In contrast to the classical hypothesis of photoperiodic flower induction involving a flower-inducing hormone ‘florigen’, it is the goal of this contribution to present the higher plant as a hydraulic-electrochemical signal transducer integrating the plant organs via action potentials in communication with intrinsic and environmental constraints and to replace ‘florigen’ by a frequency-coded hydro-electrochemical signal pattern. Observation of whole plant behaviour by time lapse photography clearly shows rhythmic integration of the main shoot axis and side branches in rhythmic growth as well as in leaf movements. This was observed with short-day ecotypes of Chenopodium rubrum L. and a long-day ecotype of Chenopodium murale L. Upon flower induction the phase relationship between rhythmic SER and leaf movements is altered in a very specific way both in the short-day and long-day plant (Wagner et al., Flowering Newslett, 26:62–74, 1998). The experimental set-up for running these investigations is shown in Fig. 11.1. The recording of surface sum action potentials from the surface of Chenopodium plants is achieved with bipolar electrodes and differential amplifiers similar to the equipment used for recording EEGs and ECGs in medicine. Finally, electrophysiograms (EPGs) can be obtained from various phases of plant development (i.e. juvenility, maturity) to be used for applied purposes like plant characterisation and manipulation in nurseries or glasshouse crops. Rhythmic integration of the whole plant possibly involves modulation of turgor pressure via stretch-activated ion channels and concomitant changes in membrane potential. The perception of a flower inducing dark period might lead to a change in electrochemical signalling between leaves and the shoot apical meristem (SAM) and thus represent ‘florigen’. The switch from the vegetative to the flowering state is a threshold response, systemic in nature and involving not only the apical meristem but also the axillary buds. Thus we believe that the flower inducing signal may be electrical in nature, requiring a holistic biosystem analysis for quantitative ilucidation.

Albrechtová—passed away 29.11.2005

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamec L, Krekule J (1989a) Changes in membrane potential in Chenopodium rubrum during the course of photoperiodic flower induction. Biol Plant 31:336–343

    Article  Google Scholar 

  • Adamec L, Krekule J (1989b) Changes in transorgan electric potential in Chenopodium rubrum during the course of photoperiodic flower induction. Biol Plant 31:344–353

    Article  Google Scholar 

  • Adamec L, Machackova I, Krekule J, Novakova M (1989) Electric current inhibits flowering in the short-day plant Chenopodium rubrum L. J Plant Physiol 134:43–46

    Article  Google Scholar 

  • Aimi R, Shibasaki S (1975) Diurnal change in bioelectric potential of Phaseolus plant in relation to the leaf movement and light conditions. Plant Cell Physiol 16:1157–1162

    Google Scholar 

  • Albrechtová JTP, Wagner E (1998) Measurement of membrane potential using a fluorescent probe: ‘nerves’ in plants? In: Abstract of the 11th international Symposium, workshop on plant membrane biology, Cambridge, p 318

    Google Scholar 

  • Albrechtová JTP, Wagner E (2004) Mechanisms of changing organogenesis at the apex of Chenopodium rubrum during photoperiodic flower induction. Flowering Newslett 38:27–33

    Google Scholar 

  • Albrechtová JTP, Metzger C, Wagner E (2001) pH-patterning at the shoot apical meristem as related to time of day during different light treatments. Plant Physiol Biochem 39:115–120

    Article  Google Scholar 

  • Albrechtová JTP, Heilscher S, Leske L, Walczysko P, Wagner E (2003) Calcium and pH patterning at the apical meristem are specifically altered by photoperiodic flower induction in Chenopodium spp. Plant Cell Environ 26:1985–1994

    Article  Google Scholar 

  • Albrechtová JTP, Dueggelin M, Dürrenberger M, Wagner E (2004) Changes in geometry of the apical meristem and concomitant changes in cell wall properties during photoperiodic induction of flowering in Chenopodium rubrum. New Phytol 163:263–269

    Article  Google Scholar 

  • Albrechtová JTP, Vervliet-Scheebaum M, Normann J, Veit J, Wagner E (2006) Metabolic control of transcriptional-translational control loops (TTCL) by circadian oscillation in the redox- and phosporylation state of cells. Biol Rhythm Res 37(4):381–389

    Article  CAS  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Article  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Baiges I, Schaffner AR, Affenzeller MJ, Mas A (2002) Plant aquaporins. Physiol Plant 115:175–182

    Article  PubMed  CAS  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D, Barlow PW (2004) Root apices as plant command centres: the unique ‘‘brain-like’’ status of the root apex transition zone. Biologia 59(Suppl. 13):7–19

    CAS  Google Scholar 

  • Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995) Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol 73:349–365

    Article  PubMed  CAS  Google Scholar 

  • Barbier-Brygoo H, Joyard J, Pugin A, Ranjeva R (1997) Intracellular compartmentation and plant cell signalling. Trends in Plant Sci 2:214–222

    Article  Google Scholar 

  • Bauer CE, Elsen S, Bird TH (1999) Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523

    Article  PubMed  CAS  Google Scholar 

  • Bäurle I, Laux T (2003) Apical meristems: the plant’s fountain of youth. Bio Essays 25:961–970

    Google Scholar 

  • Bernier G (1988) The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39:175–219

    Article  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant Neurobiology: An integrated view of plant signalling. Trends Plant Sci 11:412–419

    Article  CAS  Google Scholar 

  • Bünning E (1942) Untersuchungen über den physiologischen Mechanismus der endogenen Tagesrhythmik bei Pflanzen. Zeitschrift für Botanik 37:433–486

    Google Scholar 

  • Bünning E (1973) The physiological clock. Springer, Berlin

    Google Scholar 

  • Bünning E (1977) Die physiologische Uhr. Springer, Berlin

    Book  Google Scholar 

  • Crèvecoeur M, Crespi P, Lefort F, Greppin H (1992) Sterols and plasmalemma modification in spinach apex during transition to flowering. J Plant Physiol 139:595–599

    Article  Google Scholar 

  • Cumming BG (1959) Extreme sensitivity of germination and photoperiodic reaction in the genus Chenopodium (Tourn.) L. Nature 184:1044–1045

    Article  PubMed  CAS  Google Scholar 

  • Cumming BG (1967) Early-flowering plants. In: Wilt F, Wessels N (eds) Methods in developmental biology. Thomas Y. Crowell Co., New York, pp 277–299

    Google Scholar 

  • Cumming BG, Wagner E (1968) Rhythmic processes in plants. Annu Rev Plant Physiol 19:381–416

    Article  Google Scholar 

  • Cumming BG, Hendricks SB, Borthwick HA (1965) Rhythmic flowering responses and phytochrome changes in a selection of Chenopodium rubrum. Can J Bot 43:825–853

    Article  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Davies E, Zawadzki T, Witter JD (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Greppin H (eds) Plant signalling plasma membrane and change of state. University of Geneva, Geneva, pp 119–137

    Google Scholar 

  • Dolmetsch RE, Xu K, Lewis RS (1998) Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392:933–936

    Article  PubMed  CAS  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  PubMed  CAS  Google Scholar 

  • Ermolayeva E, Sanders D, Johannes E (1997) Ionic mechanism and role of phytochrome-mediated membrane depolarisation in caulonemal side branch initial formation in the moss Physcomitrella patens. Planta 201:109–118

    Article  CAS  Google Scholar 

  • Flügge U-I (2000) Transport in and out of plastids: does the outer envelope membrane control the flow? TIPS 5:135–137

    Google Scholar 

  • Fukshansky L (1981) A quantitative study of timing in plant photoperiodism. Journal of Theoeretical Biology. 63–91

    Google Scholar 

  • Genoud T, Métraux J-P (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. TIPS 4:503–507

    Google Scholar 

  • Gifford EM, Stewart KD (1965) Ultrastructure of vegetative and reproductive apices of Chenopodium album. Science 149:75–77

    Article  PubMed  Google Scholar 

  • Gooch D, Packer L (1974) Oscillatory states of mitochondria. Studies on the oscillatory mechanism of liver and heart mitochondria. Arch Biochem Biophys 163:759–768

    Article  PubMed  CAS  Google Scholar 

  • Green PB (1994) Connecting gene and hormone action to form, pattern and organogenesis: biophysical transductions. J Exp Bot 45:1775–1788

    CAS  Google Scholar 

  • Greppin H, Horwitz B (1975) Floral induction and the effect of red and far-red preillumination on the light-stimulated bioelectric response of spinach leaves. Z Pflanzenphysiol 75:243–249

    Google Scholar 

  • Greppin H, Horwitz BA, Horwitz LP (1973) Light-stimulated bioelectric response in spinach leaves and photoperiodic induction. Z Pflanzenphysiol 68:336–345

    Google Scholar 

  • Gylkhandanyan AV, Evtodienko YV, Zhabotinsky AM, Kondrashova MN (1976) Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria. FEBS Lett 66:44–47

    Article  PubMed  CAS  Google Scholar 

  • Hendricks SB (1963) Metabolic control of timing. Science 141:1–7

    Google Scholar 

  • Herde O, Fuss H, Pena-Cortés H, Fisahn J (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36:737–742

    CAS  Google Scholar 

  • Herde O, Pena-Cortés H, Willmitzer L, Fisahn J (1998a) Time-resolved analysis of signals involved in systemic induction of Pin2 gene expression. Bot Acta 111:383–389

    CAS  Google Scholar 

  • Herde O, Pena-Cortés H, Willmitzer L, Fisahn J (1998b) Remote stimulation by heat induces characteristic membrane-potential responses in the veins of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153

    Article  CAS  Google Scholar 

  • Huang TC, Tu J, Chow TJ, Chen TH (1990) Circadian rhythm of the prokaryote Synechococcus Sp. RF-1. Plant Physiol 92:531–533

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Kleczkowski LA (2003) Membrane potential, adenylate levels and Mg2+ are interconnected via adenylate kinase equilibrium in plant cells. Biochim Biophys Acta 1607:111–119

    Article  PubMed  CAS  Google Scholar 

  • Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523

    Article  PubMed  CAS  Google Scholar 

  • Jang J-C, Sheen J (1994) Sugar sensing in higher plants. Plant Cell 6:1665–1679

    Article  PubMed  CAS  Google Scholar 

  • Joshi HM, Tabita FR (1996) A global two component signal transduction system that integrates the control pf photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci USA 93:14515–14520

    Article  PubMed  CAS  Google Scholar 

  • King RW (1975) Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum. Can J Bot 53:2631–2638

    Article  Google Scholar 

  • Könitz W (1965) Elektronenmikroskopische untersuchungen an Euglena gracilis im tagesperiodischen Licht-Dunkel-Wechsel. Planta 66:345–373

    Article  Google Scholar 

  • Lang F, Waldegger S (1997) Regulating cell volume. Am Sci 85:456–463

    Google Scholar 

  • Lehner L (2003) Elektrophysiologische Untersuchungen zur Steuerung der Blütenbildung bei Kurz- und Langtagpflanzen. PhD Thesis, University of Freiburg

    Google Scholar 

  • Li W, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392:936–940

    Article  PubMed  CAS  Google Scholar 

  • Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic and abiotic signals. Protoplasma 225:67–76

    Article  PubMed  CAS  Google Scholar 

  • Lopez F, Bousser A, Sissoëff I, Gaspar M, Lachaise B, Hoarau J, Mahé A (2003) Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol 44:1384–1395

    Article  PubMed  CAS  Google Scholar 

  • Machackova I, Krekule J (1991) The interaction of direct electric current with endogenous rhythms of flowering in Chenopodium rubrum. J Plant Physiol 138:365–369

    Article  Google Scholar 

  • Machackova I, Pospiskova M, Krekule J (1990) Further studies on the inhibitory action of direct electric current on flowering in the short-day plant Chenopodium rubrum L. J Plant Physiol 136:381–384

    Article  Google Scholar 

  • Mayer W-E, Fischer C (1994) Protoplasts from Phaseolus occineus L. pulvinar motor cells show circadian volume oscillations. Chronobiol Int 11:156–164

    Article  PubMed  CAS  Google Scholar 

  • Mills JW, Lazaro J, Mandel J (1994) Cytoskeletal regulation of membrane transport events. FASEB J 8:1161–1165

    PubMed  CAS  Google Scholar 

  • Mitchell P (1976) Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans 4:399–430

    PubMed  CAS  Google Scholar 

  • Montavon M, Greppin H (1983) Effet sur le développement de I’épinard de l‘application d’un potentiel électrique sur le pétiole d’une feuille. Saussurea (Genève) 14:79–85

    Google Scholar 

  • Montavon M, Greppin H (1986) Développement apical de I’épinard et application d’un potentiel électrique de contrainte. Saussurea (Geneve) 17:85–91

    Google Scholar 

  • Morré JD, Morré DM (1998) NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J 16:277–284

    Article  Google Scholar 

  • Morré JD, Morré DM, Penel C, Greppin H (1999) NADH oxidase periodicity of spinach leaves synchronized by light. Int J Plant Sci 160:855–860

    Article  PubMed  Google Scholar 

  • Murakami S, Packer L (1970) Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol 45:289–299

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Lee I, Blázquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 149:403–410

    Google Scholar 

  • Normann J, Vervliet-Scheebaum M, Albrechtova JTP, Wagner E (2007) Rhythmic stem extension grows and leaf movements as markers of plant behaviour: the integral output from endogenous and environmental signals. In: Mancuso S, Shabala S (eds) Rhythms in Plants. Springer, Phenomenology, mechanisms and adaptive significance, pp 199–217

    Chapter  Google Scholar 

  • Notaguchi M, Abe M et al (2008) Long-Distance, graft-transmissible action of arabidopsis FLOWERING LOCUS T protein to promote flowering. Oxford J, Life Sci, Plant Cell Physiol 49(11):1645–1658

    CAS  Google Scholar 

  • Novak B, Greppin H (1979) High-frequency oscillations and circadian rhythm of the membrane potential of Spinach leaves. Planta 144:235–240

    Article  Google Scholar 

  • Novak B, Sironval C (1976) Circadian rhythms of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea. Plant Sci Lett 6:273–283

    Article  Google Scholar 

  • Ohya T, Hayashi Y, Tanoi K, Rai H, Suzuki K, Albrechtova JTP, Nakanishi TM, Wagner E (2005) Root-shoot-signalling in Chenopodium rubrum L. as studied by 15O labeled water uptake. In: Abstract of the 17th international symposium on botanical congress, Vienna, 17–23 July 2005, p 313

    Google Scholar 

  • Olcese JM (1990) The neurobiology of magnetic field detection in rodents. Prog Neurobiol 35:325–330

    Article  PubMed  CAS  Google Scholar 

  • Penel C, Auderset G, Bernardini N, Castillo FJ, Greppin H, Morré J (1988) Compositional changes associated with plasma membrane thickening during floral induction in spinach. Physiol Plant 73:134–146

    Article  CAS  Google Scholar 

  • Pickard BG (1994) Contemplating the plasmalemmal control center model. Protoplasma 182:1–9

    Article  PubMed  CAS  Google Scholar 

  • Richly E, Dietzmann A, Biehl A, Kurth J, Laloi C, Apel K, Salamini F, Leister D (2003) Covariations in the nuclear chloroplast transcriptome reveal a regulatory master-switch. EMBO Rep 4:491–498

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Sippola K, Aro E-M (2000) Expression of psbA genes is regulated at multiple levels in the cyanobacterium Synechococcus sp. PCC 7942. Photochem Photobiol 71:706–714

    Article  PubMed  CAS  Google Scholar 

  • Smith E, Morowitz HJ (2004) Universality in intermediary metabolism. PNAS 101:13168–13173

    Article  PubMed  CAS  Google Scholar 

  • Sørensen TS, Castillo JL (1980) Spherical drop of cytoplasm with an effective surface tension influenced by oscillating enzymatic reactions. J Colloid Interface Sci 76:399–417

    Article  Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    Article  PubMed  CAS  Google Scholar 

  • Stelling J, Gilles ED, Doyle FJ III (2004) Robustness properties of circadian clock architectures. PNAS 101:13210–13215

    Article  PubMed  CAS  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  PubMed  CAS  Google Scholar 

  • Tournaire-Roux C, Sutka M, Javot H, Gout E, Gerbeau P, Luu DT, Bligny R, Maurel C (2003) Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425:393–397

    Article  PubMed  CAS  Google Scholar 

  • Trebacz K, Sievers A (1998) Action potentials evoked by light in traps of Dionaea muscipula Ellis. Plant Cell Physiol 39:369–372

    Article  CAS  Google Scholar 

  • Tsuschiya T, Ishiguri Y (1981) Role of the quality of light in the photoperiodic flowering response in four latitudinal ecotypes of Chenopodium rubrum L. Plant Cell Physiol 22:525–532

    Google Scholar 

  • Veit J, Wagner E, Albrechtová JTP (2004) Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction. Plant Physiol Biochem 42:573–578

    Article  PubMed  CAS  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? TIBS 23:369–374

    PubMed  CAS  Google Scholar 

  • Wagner E (1976a) Endogenous rhythmicity in energy metabolism: Basis for timer-photoreceptor-interactions in photoperiodic control. In: Hastings JW, Schweiger HG (eds) Dahlem konferenzen. Aabkon Verlagsgesellschaft, Berlin, pp 215–238

    Google Scholar 

  • Wagner E (1976b) Kinetics in metabolic control of time measurement in photoperiodism. J Interdiscipl Cycle Res 7:313–332

    Article  CAS  Google Scholar 

  • Wagner E (1976c) The nature of photoperiodic time measurement: energy transduction and phytochrome action in seedlings of Chenopodium rubrum. In: Smith H (ed) Light and plant development. In: Proceedings of the 22nd Nottingham Easter school in agricultural sciences, Butterworth, London

    Google Scholar 

  • Wagner E (1977) Molecular basis of physiological rhythms. In: Jennings DH (ed) Integration of activity in the higher plant, Society for Experimental Biology, Symposium 31, Cambridge University Press, Cambridge, pp 33–72

    Google Scholar 

  • Wagner E, Cumming BG (1970) Betacyanine accumulation, chlorophyll content and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action. Can J Bot 48:1–18

    Article  CAS  Google Scholar 

  • Wagner E, Frosch S, Deitzer GF (1974a) Membrane oscillator hypothesis of photoperiodic control. In: De Greef JA, (ed) Proceedings of the annual European symposium on plant photomorphogenesis, Campus of the State University Centre, Antwerpen, pp 15–19

    Google Scholar 

  • Wagner E, Frosch S, Deitzer GF (1974b) Metabolic control of photoperiodic time measurements. J Interdiscipl Cycle Res 5:240–246

    Article  CAS  Google Scholar 

  • Wagner E, Deitzer GF, Fischer S, Frosch S, Kempf O, Stroebele L (1975) Endogenous oscillations in pathways of energy transduction as related to circadian rhythmicity and photoperiodic control. BioSystems 7:68–76

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Haertle U, Kossmann I, Frosch S (1983) Metabolic and developmental adaption of eukaryotic cells as related to endogenous and exogenous control of translocators between subcellular compartments. In: Schenk H, Schwemmler W (eds) Endocytobiology II. Walter de Gruyter & Co., Berlin, pp 341–351

    Google Scholar 

  • Wagner E, Bonzon M, Normann J, Albrechtová JTP, Greppin H (1996) Signal transduction and metabolic control of timing in photoperiodism. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on biorhythmicity. Geneva University Press, Geneva, pp 3–23

    Google Scholar 

  • Wagner E, Normann J, Albrechtová JTP, Bonzon M, Greppin H (1997) Photoperiodic control of flowering: electrochemical-hydraulic communication between plant organs—“florigen” a frequency-coded electric signal? In: Greppin H, Penel C, Simon P (eds) Travelling Shot on Plant Development. University of Geneva, Geneva, pp 165–181

    Google Scholar 

  • Wagner E, Normann J, Albrechtová JTP, Walczysko P, Bonzon M, Greppin H (1998) Electrochemical-hydraulic signalling in photoperiodic control of flowering: Is „florigen“ a frequency-coded electric signal? Flowering Newslett 26:62–74

    Google Scholar 

  • Wagner E, Albrechtová JTP, Normann J, Greppin H (2000) Redox state and phosphorylation potential as macroparameters in rhythmic control of metabolism—a molecular basis for seasonal adaptation of development. In: Vanden Driessche Th et al. (eds) The redox state and circadian rhythms, Kluwer Academic Press, Dordrecht

    Google Scholar 

  • Wagner E, Lehner L, Normann J, Albrechtová JTP (2004) Electrogenic flower initiation—perspectives for whole plant physiology and for applications in horticulture, agriculture and silviculture. Flowering Newslett 38:3–9

    Google Scholar 

  • Wagner E, Lehner L, Normann J, Veit J, Albrechtová J (2006a) Hydro-electrochemical integration of the higher plant—basis for electrogenic flower induction. In: Baluska F (ed) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 369–389

    Google Scholar 

  • Wagner E, Lehner L, Veit J, Normann J, Vervliet-Scheebaum M, Albrechtová JTP (2006b) Control of plant development by hydro-electrochemical signal transduction: a means for understanding photoperiodic flower induction. In: Volkov AG (ed) Plant electrophysiology. Theory and methods. Springer, Berlin, pp 483–501

    Chapter  Google Scholar 

  • Walczysko P, Wagner E, Albrechtová JTP (2000) Application of co-loaded Fluo-3 and Fura Red fluorescent indicators for studying the spatial Ca2+ distribution in living plant tissue. Cell Calcium 28:23–32

    Article  PubMed  CAS  Google Scholar 

  • Wildon DC, Doherty HM, Eagles G, Bowles DJ, Thain JF (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann Bot 64:691–695

    Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Wright KM, Oparka KJ (1997) Metabolic inhibitors induce symplastic movement of solutes from the transport phloem of Arabidopsis roots. J Exp Bot 48:1807–1814

    CAS  Google Scholar 

  • Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604

    Article  Google Scholar 

  • Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O’Gara J, Kaplan S (1998) Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 180:2801–2809

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wagner, E., Lehner, L., Veit, J., Normann, J., Albrechtová, J.T. (2012). Biosystems Analysis of Plant Development Concerning Photoperiodic Flower Induction by Hydro-Electrochemical Signal Transduction. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29110-4_11

Download citation

Publish with us

Policies and ethics