Moon and Cosmos: Plant Growth and Plant Bioelectricity

Chapter

Abstract

Many of the growth movements of plants (diurnal leaf movements, and perhaps stem dilatation cycles) initiate action potentials which are propagated within the plant body. Action potentials are then able to serve as informational signals that regulate further processes. Some movements appear to be regulated by turning points in the time-courses of the lunisolar tidal accelerative force, when the rate of accelerative change is zero. There are, in addition, other more constitutive bioelectrical phenomena in plants, such as electrical potential differences. These, also, are critically examined in relation to the lunisolar tide. Because of its ever-present nature, it is difficult to analyse experimentally effects of this lunisolar tide on organic processes; nevertheless, it may be possible to take steps towards validating the Moon’s effect. This would take advantage of the predictability of the tidal acceleration profile and, hence, experiments could be devised to anticipate possible lunisolar tidal effects on biological events. Certain additional cosmic regulators of bioelectric patterns in plants, such as geomagnetic variations are also discussed, as are the effects of natural seismic events.

Keywords

Electrical Potential Electrical Potential Difference Atmospheric Electricity Lunar Phase Leaf Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am grateful to Professor E Klingelé for the gift of the Etide program, to Professor M Mikulecký for analysing the Polar Cap (Thule) Index time-course in Fig. 10.6, to Dr Olga V Khabarova for information about solar wind-magnetosphere interactions, to Professor E Zürcher for helpful remarks, and to Mr Timothy Colborn who expertly prepared the Figures. Data relating to water volume fraction (Fig. 10.11) were kindly provided by Dr JP Sparks and Professor MJ Canny.

References

  1. Annila A, Kuismanen E (2009) Natural hierarchy emerges from energy dispersal. BioSystems 95:227–233PubMedCrossRefGoogle Scholar
  2. Antkowiak B, Meyer W-E, Engelmann W (1991) Oscillations of the membrane potential of pulvinar motor cells in situ in relation to leaflet movements of Desmodium motiorum. J Exp Bot 42:901–910CrossRefGoogle Scholar
  3. Baly ECC, Semmens ES (1924) The selective action of polarised light.–I. The hydrolysis of starch. Proc R Soc London, Ser B 97:250–253CrossRefGoogle Scholar
  4. Barlow PW (1999) Living plant systems: how robust are they in the absence of gravity? Adv Space Res 23:1975–1986PubMedCrossRefGoogle Scholar
  5. Barlow PW (2005) From cambium to early cell differentiation within the secondary vascular system. In: Holbrook NM, Zwieniecki MA (eds) Vascular transport in plants. Elsevier Academic Press, Amsterdam, pp 279–306CrossRefGoogle Scholar
  6. Barlow PW (2008) Reflections on ‘plant neurobiology’. BioSystems 92:132–147PubMedCrossRefGoogle Scholar
  7. Barlow PW (2010) The origins of life, of living and cognition, and of the phytoneural system. In: Abstracts evolution in communication and neural processing. From first organisms and plants to man and beyond. Modena, 18-19 Nov 2010, pp 5–6Google Scholar
  8. Barlow PW, Fisahn J (2012) Lunisolar tidal force and the growth of plant roots, and some other of its effects on plant movements. Annals of Botany (in press)Google Scholar
  9. Barlow PW, Klingelé E, Mikulecký M (2009) The influence of the lunar-solar tidal acceleration on trees gives a glimpse of how the plant-neurobiological system came into being. In: Abstracts 5th international symposium on plant neurobiology, Firenze, 25–29 May 2009, pp 11–13Google Scholar
  10. Barlow PW, Mikulecký M, Střeštík J (2010) Tree-stem diameter fluctuates with the lunar tides and perhaps with geomagnetic activity. Protoplasma 247:25–43PubMedCrossRefGoogle Scholar
  11. Beeson CFC, Bhatia BM (1936) On the biology of the Bostrychidae (Coleopt.). Indian For Rec 2:223–323Google Scholar
  12. Breus TK, Cornélisson G, Halberg F, Levitin AE (1995) Temporal associations of life with solar and geophysical activity. Ann Geophys 13:1211–1222CrossRefGoogle Scholar
  13. Brouwer G (1926) De Periodieke Bewegingen van de Primaire Bladen bij Canavalia ensiformis. HJ Paris, AmsterdamGoogle Scholar
  14. Bünning E (1956) Die physiologische Uhr. Naturwissenschaftliche Rundschau 9:351–357Google Scholar
  15. Bünning E (1963) Die Physiologische Uhr. Springer, HeidelbergGoogle Scholar
  16. Bünning E, Moser I (1969) Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction. Proc Nat Acad Sci USA 62:1018–1022PubMedCrossRefGoogle Scholar
  17. Burr HS (1943) Electrical correlates of pure and hybrid strains of sweet corn. Proc Nat Acad Sci USA 29(163):166Google Scholar
  18. Burr HS (1944) Moon madness. Yale J Biol Med 16:249–256PubMedGoogle Scholar
  19. Burr HS (1945) Diurnal potentials in the Maple tree. Yale J Biol Med 17:727–735PubMedGoogle Scholar
  20. Burr HS (1947) Tree potentials. Yale J Biol Med 19:311–318PubMedGoogle Scholar
  21. Burr HS (1956) Effect of a severe storm on electric properties of a tree and the earth. Science 124:1204–1205PubMedCrossRefGoogle Scholar
  22. Burr HS, Sinnott EW (1944) Electrical correlates of form in cucurbit fruits. Am J Bot 31:249–253CrossRefGoogle Scholar
  23. Cantiani M (1978) Il ritmo di accrescimento diurno della douglasia del tiglio e del liriodendro a Vallombrosa. L’Italia Forestale e Montana, No 2:57–74Google Scholar
  24. Cantiani M, Sorbetti GF (1989) Transpirazione e ritmo circadiano delle variazzioni reversibli del diametro dei fusti di alcune piante arboree (1a parte). L’Italia Forestale e Montana, No 5:341–372Google Scholar
  25. Cantiani M, Cantiani M-G, Guerri Sorbetti F (1994) Rythmes d’accroissement en diameter des arbres forestiers. Révue Forestière Française 46:349–358CrossRefGoogle Scholar
  26. Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246PubMedCrossRefGoogle Scholar
  27. Dengel S, Aeby D, Grace J (2009) A relationship between galactic cosmic radiation and tree rings. New Phytol 184:545–551PubMedCrossRefGoogle Scholar
  28. Dodson HW, Hedeman ER (1964) An unexpected effect in solar cosmic ray data related to 29.5 days. J Geophys Res 69:3965–3971CrossRefGoogle Scholar
  29. Dorda G (2010) Quantisierte Zeit und die Vereinheitlichung von Gravitation und Elektromagnetismus. Cuvillier Verlag, GöttingenGoogle Scholar
  30. Fisahn J, Yazdanbakhsh N, Klingelé E, Barlow P (2012) Sensitivity of developing Arabidopsis roots to lunisolar tidal acceleration: a precise backup clock (submitted)Google Scholar
  31. Fraser-Smith AC (1978) ULF tree potential and geomagnetic pulsations. Nature 271:641–642CrossRefGoogle Scholar
  32. Fraser-Smith AC (1993) ULF magnetic fields generated by electrical storms and their significance to geomagnetic pulsation generation. Geophys Res Lett 20:467–470CrossRefGoogle Scholar
  33. Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469CrossRefGoogle Scholar
  34. Fromm J, Fei H (1998) Electrical signalling and gas exchange in maize plants in drying soil. Plant Sci 132:203–213CrossRefGoogle Scholar
  35. Fromm J, Lautner S (2007) Electrical signals and their physiological function. New Phytol 30:249–257Google Scholar
  36. Gál J, Horváth G, Barta A, Wehner R (2001) Polarization of the moonlit clear night sky measured by full-sky imaging polarimetry at full Moon: comparison of the polarization of moonlit sunlit skies. J Geophys Res 106(D19):22647–22653CrossRefGoogle Scholar
  37. Galland P, Pazur A (2005) Magnetoperception in plants. J Plant Res 118:371–389PubMedCrossRefGoogle Scholar
  38. Gibert D, Le Mouël J-L, Lambs L, Nicollin F, Perrier F (2006) Sap flow and daily electric potential variations in a tree trunk. Plant Sci 171:572–584CrossRefGoogle Scholar
  39. Goldsworthy A (1983) The evolution of plant action-potentials. J Theor Biol 103:645–648CrossRefGoogle Scholar
  40. Grant RA, Halliday T, Balderer WP, Leuenberger F, Newcomer M, Cyr G, Freund FT (2011) Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Pub Health 8:1936–1956Google Scholar
  41. Graviou E (1978) Analogies between rhythms in plant material, in atmospheric pressure, and solar lunar periodicities. Int J Biometeorol 22:103–111CrossRefGoogle Scholar
  42. Guhathakurta A, Dutt BK (1961) Electrical correlate of the pulsatory movement of Desmodium gyrans. Trans Bose Res Inst 24:73–82Google Scholar
  43. Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 207:732–734Google Scholar
  44. Holzknecht K, Zürcher E (2006) Tree stems and tides—A new approach and elements of reflexion. Schweizerische Zeitschrift für Forstwesen 157:185–190CrossRefGoogle Scholar
  45. Hong EJ, West AE, Greenberg ME (2005) Transcriptional control of cognitive development. Curr Opin Neurobiol 15:21–28PubMedCrossRefGoogle Scholar
  46. Kachakhidze MK, Kiladze R, Kachakhidze N, Kukhianidze V, Ramishvili G (2010) Connection of large earthquakes occurring moment with the movement of the Sun and the Moon and with the Earth crust tectonic stress character. Nat Hazards Earth Syst Sci 10:1629–1633CrossRefGoogle Scholar
  47. Khabarova OV, Dimitrova S (2009) On the nature of people’s reaction to space weather and metereological weather changes. Sun Geosph 4:60–71Google Scholar
  48. Klein G (2007) Farewell to the internal clock. A contribution in the field of chronobiology. Springer, New YorkGoogle Scholar
  49. Koppán A, Szarka L, Wesztergom V (1999) Temporal variation of electrical signal recorded in a standing tree. Acta Geodaetica Geophysica Hungarica 34:169–180Google Scholar
  50. Koppán A, Fenyvesi A, Szarka L, Wesztergom V (2000) Annual fluctuation in amplitudes of daily variations of electrical signals measured in the trunk of a standing tree. Comptes Rendus de l’ Académie des Sciences, Paris, Sciences de la Vie/Life Sciences 323:559–563CrossRefGoogle Scholar
  51. Koppán A, Fenyvesi A, Szarka L, Wesztergom V (2002) Measurement of electric potential difference on trees. Acta Biologica Szegediensis 46(3–4):37–38Google Scholar
  52. Koppán A, Szarka L, Wesztergom V (2005) Local variability of electric potential differences on the trunk of Quercus cerris L. Acta Silvatica et Lignaria Hungarica 1:73–81Google Scholar
  53. Kozyreva O, Pilipenko V, Engebretson MJ, Yumoto K, Watermann J, Romanova N (2007) In search of a new ULF wave index: comparison of Pc5 power with dynamics of geostationary relativistic electrons. Planet Space Sci 55:755–769CrossRefGoogle Scholar
  54. Kundt W (1998) The heart of plants. Curr Sci 75:98–102Google Scholar
  55. Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209PubMedCrossRefGoogle Scholar
  56. Le Mouël J-L, Gibert D, Poirier J-P (2010) On transient electric potential variations in a standing tree and atmospheric electricity. CR Geosci 342:95–99CrossRefGoogle Scholar
  57. Lemström S (1901) Ueber das Verhalten der Flüssigkeiten in Capillarröhhren unter Einfluss eines elektrischen Luftstromes. Annalen der Physik Series 4 5:729–756CrossRefGoogle Scholar
  58. Lemström S (1904) Electricity in agriculture and horticulture. “The Electrician” Printing and Publishing Company Ltd, LondonGoogle Scholar
  59. Levin M (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics 24:295–315PubMedCrossRefGoogle Scholar
  60. Lodge O (1908) Electricity in agriculture. Nature 78:331–332CrossRefGoogle Scholar
  61. Lopes RMC, Malin SR, Mazzarella A, Palumbo A (1990) Lunar and solar triggering of earthquakes. Phys Earth Planet Inter 59:127–129CrossRefGoogle Scholar
  62. MacDougal DT (1921) Growth in trees. Carnegie Institution of Washington Publication No. 307, Washington, p 41Google Scholar
  63. Maeda H (1968) Variations in geomagnetic field. Space Sci Rev 8:555–590CrossRefGoogle Scholar
  64. Markson R (1971) Considerations regarding solar and lunar modulation of geophysical parameters, atmospheric electricity and thunderstorms. Pure Appl Geophys 84:161–200CrossRefGoogle Scholar
  65. Markson R (1972) Tree potentials and external factors. In: Burr HS (ed) The fields of life. Ballantyne Books, New York, pp 186–206Google Scholar
  66. Mehra P (1989) Lunar phases and atmospheric electric field. Adv Atmos Sci 6:239–246CrossRefGoogle Scholar
  67. Meylan S (1971) Bioélectricité. Quelques problèmes. Masson et Cie, ParisGoogle Scholar
  68. Molchanov AM (1968) The resonant structure of the solar system. The law of planetary distances. Icarus 8:203–215CrossRefGoogle Scholar
  69. Morat P, Le Mouël JL, Granier A (1994) Electric potential on a tree. A measurement of the sap flow? Comptes Rendus de l’Académie des Sciences, Paris, Sciences de la Vie/Life Sciences 317:98–101Google Scholar
  70. Moshelion M, Becker D, Czempinski K, Mueller-Roeber B, Attali B, Hedrich R, Moran N (2002) Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiol 128:634–642PubMedCrossRefGoogle Scholar
  71. Nelson OE, Burr HS (1946) Growth correlates of electromotive forces in maize seeds. Proc Nat Acad Sci USA 32:73–84PubMedCrossRefGoogle Scholar
  72. Nishimura T, Fukushima M (2009) Why animals respond to the full moon: magnetic hypothesis. Biosci Hypotheses 2:399–401CrossRefGoogle Scholar
  73. Oyarce P, Gurovich L (2009) Electrical signals in avocado trees. Responses to light and water availability conditions. Plant Signal Behav 5:34–41CrossRefGoogle Scholar
  74. Oyarce P, Gurovich L (2011) Evidence for the transmission of information through electric potentials in injured avocado trees. J Plant Physiol 168:103–108PubMedCrossRefGoogle Scholar
  75. Polevoi VV, Bilova TE, Shevtsov Yu I (2003) Electroosmotic phenomema in plant tissues. Biology Bulletin (English translation of Izvestiya Akademii Nauk, Seriya Biologicheskaya) 30:133–139Google Scholar
  76. Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805CrossRefGoogle Scholar
  77. Saito Y (2007) Preceding phenomena observed by tree bio-electric potential prior to Noto Penninsula off earthquake. Japan Geoscience Union Meeting 2007. 1–14. (http://www.jsedip.jp/English/Papers/070512_JGU%20Meeting%202007-E.pdf)
  78. Sapolsky RM (2004) Mothering style and methylation. Nat Neurosci 7:791–792PubMedCrossRefGoogle Scholar
  79. Semmens ES (1947a) Chemical effects of moonlight. Nature 159:613PubMedCrossRefGoogle Scholar
  80. Semmens ES (1947b) Starch hydrolysis induced by polarized light in stomatal guard cells in living plants. Plant Physiol 22:270–278PubMedCrossRefGoogle Scholar
  81. Sharma S, Dashora N, Galav P, Pandey R (2010) Total solar eclipse of July 22, 2009: its impact on the total electron content and ionospheric electron density in the Indian zone. J Atmos Solar Terr Phys 72:1387–1392CrossRefGoogle Scholar
  82. Sparks JP, Campbell GS, Black RA (2001) Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia 127:468–475CrossRefGoogle Scholar
  83. Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in Plants, Springer-Verlag, Berlin, pp 291–308CrossRefGoogle Scholar
  84. Stolov HL, Cameron AGW (1964) Variations of geomagnetic activity with lunar phase. J Geophys Res 69:4975–4981CrossRefGoogle Scholar
  85. Sztein AE, Cohen JD, Cooke TJ (2000) Evolutionary patterns in the auxin metabolism of green plants. Int J Plant Sci 161:849–859CrossRefGoogle Scholar
  86. Tchizhevsky AL (1940) Cosmobiologie et rythme du milieu extérieur. Acta Medica Scandinavica, Supplement 108:211–226Google Scholar
  87. Toriyama H (1991) Individuality in the anomalous bioelectric potential of silk trees prior to earthquake. Science Report of Tokyo Woman’s Christian University 94–95, pp 1067–1077Google Scholar
  88. Troshichev OA, Andrezen VG, Vennerstrøm S, Friis-Christensen E (1988) Magnetic activity in the polar cap—a new index. Planet Space Sci 36:1095–1102CrossRefGoogle Scholar
  89. Troshichev OA, Gorshkov ES, Shapovalov SN, Sokolovskii VV, Ivanov VV, Vorobeitchikov VM (2004) Variations of the gravitational field as a motive power for rhythms of biochemical processes. Adv Space Res 34:1619–1624PubMedCrossRefGoogle Scholar
  90. van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011) Questions on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218PubMedCrossRefGoogle Scholar
  91. Vasil’eva NI (1998) Correlations between terrestrial and space processes within the framework of universal synchronization. Biophysics 43:694–696Google Scholar
  92. Vogt KA, Beard KH, Hammann S, O’Hara Palmiotto J, Vogt DJ, Scatena FN, Hecht BP (2002) Indigenous knowledge informing management of tropical forests: the link between rhythms in plant secondary chemistry and lunar cycles. Ambio 31:485–490PubMedGoogle Scholar
  93. Volkov AG, Haack RA (1995) Insect-induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 37:55–60CrossRefGoogle Scholar
  94. Volkov AG, Mwesigwa J (2001) Electrochemistry of soybean: effects of uncouplers, pollutants, and pesticides. J Electroanal Chem 496:153–157CrossRefGoogle Scholar
  95. Volkov AG, Ranatunga DRA (2006) Plants as environmental biosensors. Plant Signal Behav 1:105–115PubMedCrossRefGoogle Scholar
  96. Volkov AG, Dunkley TC, Labady AJ, Brown CL (2005) Phototropism and electrified interfaces in green plants. Electrochim Acta 50:4241–4247CrossRefGoogle Scholar
  97. Wagner E, Lehner L, Normann J, Veit J, Albrechtová J (2006) Hydro-electrochemical integration of the higher plant–Basis for electrogenic flower induction. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, pp 370–389Google Scholar
  98. Zurbenko IG, Potrzeba AL (2010) Tidal waves in the atmosphere and their effects. Acta Geophys 58:356–373CrossRefGoogle Scholar
  99. Zürcher E, Cantiani M-G, Sorbetti Guerri F, Michel D (1998) Tree stem diameters fluctuate with tide. Nature 392:665–666CrossRefGoogle Scholar
  100. Zweifel R, Item H, Häsler R (2000) Stem radius changes and their relation to stored water in stems of young Norway spruce trees. Tree 15:50–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations