Precipitation and Evapotranspiration

  • Robert Maliva
  • Thomas Missimer
Part of the Environmental Science and Engineering book series (ESE)


Local water budgets in arid regions are dominated by precipitation and evapotranspiration. Vadose zone interflow is a minor component of local water budgets and typically recharge rates are only a small percentage of rainfall. However, the paucity of vegetation and the occurrence of surface crusts in arid and semi-arid regions results in low soil-infiltration rates, which combined with high-intensity, short-duration convective rainfall, favor runoff. Overland flow, concentrated by topography, converges on wadi channel networks, tends to result in flood flow. Arid lands are, thus, prone to flash floods, which can he highly destructive and frequently result in loss of life. In flat-lying areas virtually all precipitation that falls in inter-channel areas may be lost to evapotranspiration.


Latent Heat Flux Rain Gauge Time Domain Reflectometry Soil Heat Flux Rain Gauge Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdullah, M. A., & Al-Mazroui, M. A. (1998). Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis. Climate Research, 9, 213–233.CrossRefGoogle Scholar
  2. Agnew, C., & Anderson, W. (1992). Water in the arid realm (329 pp.). London: Routledge.Google Scholar
  3. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration—Guidelines for computing crop water requirements. Rome, Italy, FAO Irrigation and Drainage Paper 56, Food and Agricultural Organization of the United Nations.Google Scholar
  4. Almazroui, M. (2011a). Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmospheric Research, 99(3–4):155–165.Google Scholar
  5. Almazroui, M. (2011b). Sensitivity of a regional climate model on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theoretical and Applied Climatology, 104(1), 261–276.Google Scholar
  6. Bell, J. P. (1987). Neutron probe practice (3rd ed.). Wallingford, UK: Institute of Hydrology Report 19: Institute of Hydrology. Google Scholar
  7. Bell, J. P., Dean, T. J., & Hodnett, M. G. (1987). Soil moisture measurement by an improved capacitance technique: II. Field techniques, evaluation, and calibration. Journal of Hydrology (Amsterdam), 93, 79–90.Google Scholar
  8. Blaney, H. F. (1959). Monthly consumptive use requirements for irrigated crops. Journal of the Irrigation and Drainage Division, 85(1), 1–12.Google Scholar
  9. Blaney, H.F., & Criddle, W.D. (1950). Determining water requirements in irrigated areas from climatological and irrigation data: U.S. Department of Agriculture, Soil Conservation Survey, SCS‐TP 96, (p. 44). Google Scholar
  10. Brouwer, C, & Heibloem, M. (1986). Irrigation water management: Irrigation water needs. United Nations Food and Agriculture Organization (FAO) Irrigation Water Management, Training Manual No. 3.Google Scholar
  11. Chow V. T., Maidment D. R., & Mays L.W. (1988). Applied hydrology. New York: McGraw‐ Hill. Google Scholar
  12. Critchley, W., & Siegert, K. (1991). Manual for the design and construction of water harvesting schemes for plant production. Rome: Food and Agriculture Organization of the United NationsGoogle Scholar
  13. Doorenbos, J., & Pruitt, W. O. (1977). Guidelines for predicting crop water requirements, FAO Irrigation and Drainage Paper 24 (2nd ed.). Rome: Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  14. Fritschen, L. J. (1965). Accuracy of evapotranspiration determinations by the Bowen ratio method. Bulletin International Association of Scientific Hydrology, 10, 38–48.CrossRefGoogle Scholar
  15. Gebremichael, M., Anagnostou, E. N., & Bitew, M. M. (2010). Critical steps for continuing advancement of satellite rainfall applications for surface hydrology in the Nile River Basin. Journal American Water Resources Association, 46(2), 360–366.CrossRefGoogle Scholar
  16. Gee, G. W., & Jones, T. L. (1985). Lysimeters at the Hanford site: present use and future needs. Report prepared for the U.S. Department of Energy, Pacific Northwest Laboratory, Richland, WA.Google Scholar
  17. Graeff, T., Zehe, E., Schlaeger, S., Morgner, M., Bauer, A., Becker, R., et al. (2010). Hydrology and Earth System Sciences Discussions, 7, 269–311.Google Scholar
  18. Gregory, P. J., Poss, R., & Micin, S. (1995). Use of time-domain reflectometry (TDR) to measure the water-content of sandy soils. Australian Journal of Soil Research, 33(2), 265–275.Google Scholar
  19. Hardegree, S. P., Van Vactor, S. S., Levinson, D. H., & Winstall, A. H. (2008). Evaluation of NEXRAD radar precipitation products for natural resource applications. Rangeland Ecology & Managament, 61(3), 346–353.CrossRefGoogle Scholar
  20. Hazen, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply. Transactions American Society of Civil Engineers, 77, 1539–1640.Google Scholar
  21. Heathcote, R. L. (1983). The arid lands: Their use and abuse. London: Longman.Google Scholar
  22. Hong, Y., Hsu, K. L., Sorooshian, S., & Gao, X. (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. Journal of Applied Meteorology, 43, 1834–1852.CrossRefGoogle Scholar
  23. Huisman, J. A., Hubbard, S. S., Redman, J. D., & Annan, A. P. (2003). Measuring soil water content with ground-penetrating radar: A review. Vadose Zone Journal, 2, 476–491.Google Scholar
  24. Hunter, S. M. (1996). WSD-88D rainfall estimation: Capabilities, limitations and potential improvements. National Weather Digest, 20, 26–38.Google Scholar
  25. Irmak, S., & Haman, D. Z. (2003). Evapotranspiration: potential or reference? Gainesville, FL: University of Florida Institute of Food and Agricultural Sciences Document ABE 343.Google Scholar
  26. Jadoon, K. Z., Slob, E. C., Vanclooster, M., Vereecken, H., & Lambot, S. (2008). Uniqueness and stability analysis of hydrophysical inversion for time-lapse ground-penetrating radar estimates of shallow soil hydraulic properties. Water Resources Research, 44, W09 421, 639 doi: 10.1029/2007WR006.
  27. Jadoon, K. Z., Lambot, S., Scharnagl, B., van der Klug, J., Slob, E., & Vereechen, H. (2010). Quantifying field scale soil hydrogeophysical properties using full-waveform inversion of proximal zero-offset ground-penetrating radar. Near Surface Geophysics, 8(6), 483–491.Google Scholar
  28. Jadoon, K. Z., Slob, E., Vereecken, H., & Lambot, S. (2011). Analysis of antenna transfer functions and phase center position for modeling off-ground GPR. IEEE Transactions on Geosciences and Remote Sensing, 48(5), 1949–1662.Google Scholar
  29. Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evaporation and irrigation water requirement. American Society of Civil Engineers Manuals and Reports on Engineering Practice No. 70.Google Scholar
  30. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503Google Scholar
  31. Lambot, S., Rhebergen, J., Slob, E., Lopera, O., Jadoon, K. Z., & Vereecken, H. (2009). Remote estimation of the hydraulic properties of a sandy soil using full-waveform integrated hydrogeophysical inversion of time-lapse, off-ground GPR data. Vadose Zone Journal, 8(3), 743–754.Google Scholar
  32. Laurent, J.-P., Ruelle, P., Delage, L., Zairi, A., Nouna, B. B., & Adjmi, T. (2005). Monitoring soil water content profiles with a commercial TDR system: Comparison field tests and laboratory calibration. Vadose Zone Journal, 4, 1030–1036.CrossRefGoogle Scholar
  33. Makkonen, L. (2006). Plotting positions in extreme value analysis. Journal of Applied Meteorology and Climatology, 45, 334–340.CrossRefGoogle Scholar
  34. McGinnies, W. G. (1979). Arid land ecosystems, common features throughout the world. In D. W. Goodall, R. A. Perry, & K. M. W. Howes (Eds.), Arid land ecosystems: Structure, functioning and management (pp. 299–318). Cambridge: Cambridge University Press.Google Scholar
  35. Monteith, J. L. (1965). Evaporation and environment. In Fogg, G. E. (Ed.), Symposium of the society for experimental biology, The state and movement of water in living organisms (Vol. 19, pp. 205–234). New York: Academic Press.Google Scholar
  36. Payero, J. O., Neale, C. M. U., Wright, J. L., & Allen, R. G. (2003). Guidelines for validating Bowen ratio data. Transactions of the American Society of Agricultural Engineers, 46(4), 1051–1060.Google Scholar
  37. Penman, H. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society, A193, 120–146.Google Scholar
  38. Pereira Filho, A. J., Carbone, R. E., Janowiak, J. E., Arkin, P., Joyce, R., Hallak, R. et al. (2010) Satellite rainfall estimates over South America—possible applicability to the water management of large watersheds. Journal American Water Resources Association, 46(2), 344–360.Google Scholar
  39. Plauborg, F. (1995). Evaporation from bare soil in a temperate humid climate-measurement using micro-lysimeters and time domain reflectometry. Agricultural and Forestry Meteorology, 76, 1–17.Google Scholar
  40. Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–92.CrossRefGoogle Scholar
  41. Prueger, J. H., Hatfield, J. L., Aase, J. K., & Pikul, J. L., Jr. (1997). Bowen-ratio comparsions with lysimeter evapotranspiration. Agronomy Journal, 84, 730–736.CrossRefGoogle Scholar
  42. Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., & Friedman, S. P. (2003). Vadose Zone Journal. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, 2, 444–475.Google Scholar
  43. Şen, Z. (2008). Wadi hydrology. Boca Raton, FL: CRC Press.Google Scholar
  44. Skinner, C., Bloetscher, F., & Pathak, C. S. (2009). Comparison of NEXRAD and rain gauge precipitation measurements in South Florida. Journal of Hydrologic Engineering, 14(3), 248–260.CrossRefGoogle Scholar
  45. Sokol, R. R., & Rohlf, F. J. (1981). Biometry (2nd ed.). New York: W.H. Freeman.Google Scholar
  46. Synder, R. L. (1992). Equation for evaporation pan to evapotranspiration conversions. Journal of Irrigation and Drainage Engineering, 118, 977–980.Google Scholar
  47. Synder, R. L., Orang, M., Matyac, S., & Grisner, M. E. (2005). Simplified estimation of reference evapotranspiration from pan evaporation data in California. Journal of Irrigation and Drainage Engineering, 131, 249–253.CrossRefGoogle Scholar
  48. Tanner, B. D., & Greene, J. P. (1989). Measurements of sensible heat and water vapor fluxes using eddy correlation methods. Final report prepared for the U.S. Army Dugway Proving Grounds, Dugway, Utah.Google Scholar
  49. Task Committee on Standardization of Reference Evapotranspiration. (2005).The ASCE standardized reference evapotranspiration equation. Reston, VA: Environmental and Water Resources Institute, American Society of Civil Engineers. Google Scholar
  50. Tilahun, K. (2006). The characterization of rainfall in the arid and semi-arid regions of Ethiopia. Water SA, 32(3), 429–436.Google Scholar
  51. Timlin, D., Fleisher, D., Kim, S.-H., Reddy, V., & Baker, J. (2007). Evaporation measurement in controlled environment chambers: A comparison between time domain reflectometry and accumulation of condensate from cooling coils. Agronomy Journal, 99, 166–173.CrossRefGoogle Scholar
  52. Walton, K. (1969). The arid zone. Chicago, IL: Aldine Publishing Co.Google Scholar
  53. Weibull, W. (1939). A statistical theory of the strength of materials. Ingenoirs Vetenskaps Akadanien Handlinger, 151, 1–47.Google Scholar
  54. Wheater, H. S. (2002). Hydrological processes in arid and semi arid area. In Wheater, H., & Al-Weshah, R. A. (Eds.), Hydrology of wadi systems, IHP-V, Technical documents in hydrology, no. 55 (pp. 5–22). Paris: UNESCO.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations