Advertisement

Overview and Impacts on Arid Land Water Resources

  • Robert Maliva
  • Thomas Missimer
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The amount of research and the resulting publications on global climate changes has been truly explosive since the 1990s. The evidence is now indisputable that global climate has been warming since about 1900 and that the increase in greenhouse gases, including carbon dioxide, methane, and nitrous oxide have been a major cause of the increase. Variations in climatic conditions control the hydrologic cycle on the Earth at many scales, both spatial and temporal. Natural factors have produced cycles of global climate change ranging from extremely warm conditions, during which no polar ice existed on the planet (referred to as “Greenhouse Earth”), to the “Snowball Earth” (also called “Icehouse Earth”) when a large part of the entire planet was frozen. Natural climate changes were created by variations in the solar radiation reaching the Earth.

Keywords

Climate Change Groundwater Recharge Groundwater Resource Hydrologic Cycle Arid Land 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abelson, P. H. (1977). Energy and climate. Science, 197, 4307–4941.Google Scholar
  2. Alley, W. M. (2001). Ground water and climate. Ground Water, 39, 161.Google Scholar
  3. Alley, R. B., & Clark, P. U. (1999). The deglaciation of the northern hemisphere: A global perspective. Annual Reviews of Earth and Planetary Science, 27, 149–182.CrossRefGoogle Scholar
  4. Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Jr, et al. (2003). Abrupt climate change. Science, 299, 2005–2010.CrossRefGoogle Scholar
  5. Al-Sefry, S. A., Sen, Z. Z., Al-Ghamdi, S. A., Al-Ashi, W. A., & Al-Bardi, W. A. (2004). Strategic ground water storage of Wadi Fatimah, Makkah region. Technical Report SGS-TR-2003-2. Jeddah: Saudi Geological Survey.Google Scholar
  6. Barnett, T. P., Adam, J. C., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.CrossRefGoogle Scholar
  7. Bates, B., Kundzewicz, Z. W., Wu, S., & Palutikof, J. (Eds.). (2008). Climate change and water. Intergovernmental Panel on Climate Change Technical Paper VI, Geneva.Google Scholar
  8. Berger, A. L. (1978). Long-term variations of caloric isolation resulting from the Earth’s orbit elements. Quaternary Research, 9, 139–167.CrossRefGoogle Scholar
  9. Blunier, T., Chappellaz, J., Schwander, J., Dallenbach, A., Stauffer, B., Stocker, T. F., et al. (1998). Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature, 394, 739–743.CrossRefGoogle Scholar
  10. Broecker, W. (1999). What if the conveyor were to shut down? Reflections on a possible outcome of the great global experiment. Geology Today, 9(1), 1–7.Google Scholar
  11. Broecker, W. (2010). The great ocean conveyor: Discovering the trigger for abrupt climate change. Princeton: Princeton University Press.Google Scholar
  12. Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Murtugudde, R., Pozdnyakov, D. et al. (1997). 20th century sea surface temperature trends. Science, 275, 957–960.Google Scholar
  13. Chapagain, A. K., & Hoekstra, A. Y. (2008). The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International, 33(1), 19–32.CrossRefGoogle Scholar
  14. Clark, P. U., Pisias, N. G., Stocker, T. F., & Weaver, A. J. (2002). The role of the thermohaline circulation in abrupt climate change. Nature, 415, 863–869.CrossRefGoogle Scholar
  15. Committee on Environment and Natural Resources. (2008, May). Scientific assessment of the effects of global climate change on the United States. A Report on the Committee on Environment and Natural Resource. National Science and Technology Council.Google Scholar
  16. Cook, E. R., Bartlein, P. J., Diffenbaugh, N., Seager, R., Shuman, B. N., Webb, R. S. (2008). Hydrological variability and change. In Abrupt Climate Change: A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Reston, VA, pp. 143–257.Google Scholar
  17. Dai, A., Trenberth, K. E., & Qian, T. (2004). A global data set of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5, 1117–1130.Google Scholar
  18. Diamond, J. (2005). Collapse, how societies choose to fail or succeed. London: Penguin Books.Google Scholar
  19. Doll, P., & Florke, M. (2005). Global-scale estimation of diffuse groundwater recharge. Frankfurt Hydrology Paper 03. Institute of Physical Geography, Frankfurt University.Google Scholar
  20. Dragoni, W., & Sukhija, B. S. (2008). Climate change and groundwater: A short review. In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (pp. 1–12). Geological Society of London Special Publications No. 288.Google Scholar
  21. Ducci, D., & Transfaglia, G. (2008) Effects of climate change on groundwater resources in Campania (southern Italy). In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (pp. 25–38). Geological Society of London Special Publications No. 288.Google Scholar
  22. Frich, P., Alexander, L. V., Della-Marta, P., Gleason, B., Haylock, M., Klein Jack, A. M. G. et al. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19, 193–212.Google Scholar
  23. Gao, X., & Giorgi, F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62, 195–209.CrossRefGoogle Scholar
  24. Gleick, P. H. (1993). Water in the 21st century. In P. H. Gleick (Ed.), Water in crisis, a guide to the world’s freshwater resources (pp. 105–113). New York: Oxford University Press.Google Scholar
  25. Green, T. R., Taniguchi, M., & Kooi, H. (2007). Potential impacts of climate change and human activity on subsurface water resources. Vadose Zone Journal, 6, 531–532.CrossRefGoogle Scholar
  26. Hemming, S. R. (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global imprint. Reviews of Geophysics, 42, RG1005. doi: 10.1029/2003RG000128.
  27. Herweijer, C., Seager, R., Cook, E. R., & Emile‐Gray, J. (2007). North American drought of the last Millennium from a gridded network of tree‐ring data. Journal of Climate, 20, 1353–1376.Google Scholar
  28. Hoekstra, A. Y., & Hung, P. Q. (2002). Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report 11. IHE Delft.Google Scholar
  29. Holman, J. P. (2006). Climate change impacts of groundwater recharge—uncertainty, shortcomings, and the way forward? Hydrogeology Journal, 14, 637–647.Google Scholar
  30. Huntington, T. G. (2006). Evidence for intensification of the global water cycle review and synthesis. Journal of Hydrology, 319, 83–95.CrossRefGoogle Scholar
  31. Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A. C., Mix, A. C., Morley, J. J., et al. (1984). The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In A. Berger, J. Imbrie, J. D. Hays , G. Kukla & B. Saltzman (Eds.), Milankovitch and climate: Understanding the response to astronomical forcing, NATO science series c (pp. 269–305). Dordrecht: Kluwer Academic Publishers.Google Scholar
  32. Intergovernmental Panel on Climate Change (IPCC). (2000). Emissions Scenarios. In N. Nakicenovic & R. Swart (Eds.) Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  33. Intergovernmental Panel on Climate Change (IPCC). (2007). In S. Solomon, D. Qui, M. Manning, Z. Chen, M. Marquis, K. B. Averyl, M. Tignor, & H. L. Millers. (Eds.), Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  34. Jager, J., & Ferguson, H. L. (Eds.). (1991). Climate change: Science impacts and policy. Proceedings of the Second World Climate Conference. Cambridge: Cambridge University Press.Google Scholar
  35. Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., et al. (2007). Paleoclimate. In S. D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Avery, M. Tignor & H. L. Miller (Eds.), Climate change 2007: The physical science basis, Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change (pp. 431–497). Cambridge: Cambridge University Press.Google Scholar
  36. Karl, T. R., Melillo, J. M., & Peterson, T. C. (Eds.). (2009). Global climate change impacts in the United States. Cambridge: Cambridge University Press.Google Scholar
  37. Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences-Journal-de Sciences Hydrologiques, 54(4), 665–675.CrossRefGoogle Scholar
  38. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K. et al. (2007). Freshwater resources and their management. In M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden & C. E. Hansen (Eds.), Climate Change (2007) Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 173–310). Cambridge: Cambridge University Press.Google Scholar
  39. Kundzewicz, Z. W., Mata, L. J., Arnell, N. W., Döll, P., Jimenez, B., Miller, K., et al. (2008). The implications of projected climate change on freshwater resources and their management. Hydrological Sciences, 53(1), 3–10.CrossRefGoogle Scholar
  40. Lamb, H. H. (1995). Climate, history and the modern world (2nd ed.). New York: Routledge.Google Scholar
  41. Landais, A., Masson-Delmotte, V., Jouzel, J., Raynaud, D., Johnsen, S., Buber, C., et al. (2006). The glacial inception as recorded in the North GRIP Greenland ice core: Timing structure and associated abrupt temperature changes. Climate Dynamics, 26(2–3), 273–284.CrossRefGoogle Scholar
  42. Lemke, P., Ren, J., Alley, R., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R., & Zhang, T. (2007). Observations: Change in snow, ice and frozen ground. In S. Solomon et al. (Eds.), Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 337–384). Cambridge: Cambridge University.Google Scholar
  43. Lenton, R. (2004). Water and climate variability: Development impacts and coping strategies. Water Science and Technology, 49(7), 17–24.Google Scholar
  44. Masson‐Delmotte, V., Jouzel, J., Landis A., Stievenard, M., Johnsen, S.J., White, J. W. C., Werner, M., Sveinbjornsdottir, A., & Fuhrer, K. (2004). GRIP deuterium excess reveals rapid and orbital‐scale changes in Greenland moisture origin. Science, 309(5731), 118–121.Google Scholar
  45. Milankovitch, M. (1938). Astronomische mittel zur erforschung der erdgesschichtlichen climate. Handbuch der Geophysik, 9, 593–698.Google Scholar
  46. Milankovitch, M. (1941). Kanron der Erdbestrahlang und seine Andwendung auf das Eiszeeiten problem. Serbian Akademie Beographie Special Publication 132.Google Scholar
  47. Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(31), 514–515.CrossRefGoogle Scholar
  48. Milly, P. C. D., Dunne, K. A., & Vecchia, A. V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(17), 347–350.CrossRefGoogle Scholar
  49. Nakicenovic, N., & Swart, R. (Eds.). (2000). Special report on emissions scenarios: A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  50. Ng, G.-H., McLaughlin, D., Entekhabi, D., & Scanlon, B. R. (2010). Probablistic analysis of the effects of climate change on groundwater recharge. Water Resources Research, 46, W07502, 18 p. doi: 10.1029/2009WR007904.
  51. Oki, T. (2005). The hydrologic cycles and global circulation. In M. G. Anderson (Ed.), Encylopedia of hydrological sciences. Chichester: Wiley.Google Scholar
  52. Polemio, M., & Casarano, D. (2008) Climate change, drought and groundwater availability in southern Italy. In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (pp. 39–51). Geological Society of London Special Publications No. 288.Google Scholar
  53. Ragab, R., & Prudhomme, C. (2002). Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosystems Engineering, 81(1),3–34.Google Scholar
  54. Rahmstorf, S. (2003). Timing of abrupt climate change: A precise clock. Geophysical Research Letters, 30(10), 1510. doi: 10.1029/2003GL017115
  55. Seiler, K.-P., Gu, W.-Z., & Stichler, W. (2008). Transient response of groundwater systems to climate changes. In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (pp. 111–119). Geological Society of London Special Publications No. 288.Google Scholar
  56. Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L. et al. (2007). Technical summary. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change (2007) the Physical Science Basis. Contribution of Working Groupto the Fourth Assessment Report of the Intergovernmental Panel Onclimate Change. Cambridge: Cambridge University Press.Google Scholar
  57. Toews, M. W., & Allen, D. M. (2009). Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modeled climate change. Environmental Research Letters, 4,19, 035003 doi: 10.1088/1748-9326/4/3/035003.
  58. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A. et al. (2007). Observations: Surface and atmospheric climate change. In S. D. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Avery, M. Tignor & H. L. Miller (Eds.), Climate Change (2007) The Physical Science Basis. Contribution Of Working Group I to the Fourth Assessment Report Of the Intergovernmental Panel on Climate Change (pp. 235–336). Cambridge: Cambridge University.Google Scholar
  59. United Nations. (2004). World population to 2300. New York: United Nations.Google Scholar
  60. United Nations Educational, Scientific and Cultural Organization (UNESCO). (2006). Water: A shared responsibility. United Nations World Development Report 2, Paris.Google Scholar
  61. U.S. Global Change Research Program (USGCRP). (2009). Global climate change impacts in the United States. A report of the USGCRP. Washington: USGCRP.Google Scholar
  62. Wentz, F. J., Ricciardulli, L., Hilburn, K., & Mears, C. (2007). How much more rain will global warming bring? Science, 317(5835), 233–235.CrossRefGoogle Scholar
  63. Ye, X. A., Yang, D. Q., & Kane, D. L. (2003). Changes in the Lena River streamflow hydrology: Human impact verses natural variation. Water Resources Research, 39, 1200. doi: 10.1029/2003WR001991.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations