Non-Renewable Groundwater Resources

  • Robert Maliva
  • Thomas Missimer
Part of the Environmental Science and Engineering book series (ESE)


Perhaps no other water policy issue has greater philosophic disagreement than the exploitation of non-renewable groundwater. Non-renewable groundwater is water present in aquifers in which the rate of recharge is insignificant within the framework of the current water budget of the aquifer. Extracted groundwater is produced primarily (if not entirely) from storage. Use of non-renewable groundwater is thus inherently unsustainable under strict definitions of the term.


Groundwater Resource Recharge Rate Groundwater Basin Complex Terminal Sinai Peninsula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abd El Samie, S. G., & Sadek, M. A. (2001). Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula using isotopic techniques and hydrochemistry. Hydrogeology Journal, 9, 378–389.CrossRefGoogle Scholar
  2. Abderrahmam, W. A. (2001). Water demand management in Saudi Arabia. In: N. I. Faruqui. A. K. Biswas., & M. J. Bino (Eds.), Water management in Islam (pp. 62–68). Tokyo, Ottawa: United Nations University Press, International Research Centre.Google Scholar
  3. Abderrahmam, W. A. (2002). Should intensive use of non-renewable groundwater resources always be rejected? In R. Llamas & E. Custodio (Eds.), Intensive Use of Groundwater: Challenges and Opportunities (pp. 191–203). Lisse: A.A. Balkema.Google Scholar
  4. Abderrahman, W. A. (2005). Groundwater management for sustainable development of urban and rural areas in extremely arid regions: a case study. Water Resources Management, 21, 403–412.CrossRefGoogle Scholar
  5. Abderrahmam, W. A. (2006). Saudi Arabia aquifers. In S. Foster & D. P. Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially-sustainable management for water-policy makers (pp. 63–67). Paris: UNESCO.Google Scholar
  6. Abu-Zeid, K., & Abdel-Meguid, A. (2006). Pioneering action in managing the transboundary Nubian Sandstone groundwater aquifer. Truckee, CA: Technical Report, Centre for Environment and Development for the Arab Region and Europe (CEDARE).Google Scholar
  7. Al-Eryani, M., Appelgren, B., & Fosters, S. (2006). Social and economic dimensions of non-renewable resources. In S. Foster & D. P. Loucks (Eds.), Nonrenewable groundwater resources: A guidebook on socially sustainable management for water-policy makers. Paris: United Nations Educational.Google Scholar
  8. Alghariani, S. A., (2004) Water transfer versus desalination in North Africa: Sustainability and cost comparison, and comments by The Center of Data, Studies & Researches, Great Man-Made River Authority, Libyan Arab Jamahiriya. London, UK: School of Oriental and Africasn Studies (SOAS)/King’s College London Occasional Paper 49.Google Scholar
  9. Anderson, M., Low, R., & Foot, S. (2002) Sustainable groundwater development in arid, high Andean basins, In: K. M, Hiscock., M. O, Rivett & R. M.Davison (Eds.), Sustainable groundwater development (pp. 133–144). London, UK: Geological Society, Special Publications 193.Google Scholar
  10. Aravena, R. (1995). Isotope hydrology and geochemistry of northern Chile groundwaters. Bulletin Institute Francois Etudes Andines, 24, 495–503.Google Scholar
  11. Bakhabakhi, M. (2006). Nubian Aquifer System. In S. Foster & D. P. Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially-sustainable management for water-policy makers (pp. 75–81). Paris: UNESCO.Google Scholar
  12. Bakhbakhi, M.,& Salem, O. (2001). Why the Great Man-made River Project. In Proceedings, Regional Aquifer Systems in Arid Zones: Managing Non-renewable Resources, Tripoli, Libya November 1999, (pp. 1–16). IHP-V, Technical Documents in Hydrology No. 42. Paris: UNESCO.Google Scholar
  13. Bourdon, D. J. (1977). Flow of fossil groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 10, 97–124.CrossRefGoogle Scholar
  14. Costa, P. (2009, May 26). Water auction to provide stimulus for Great Artesian Basin. Minister Phillip Costa. Weehawken, NJ: MP press.Google Scholar
  15. Davids, J. (2005). Is it reasonable to use the Nubian Sandstone Aquifer System unsustainable under International Law? CEMLP Annual Review. The Centre for Energy, Petroleum, and Mineral Law and Policy. Dundee: University of Dundee.Google Scholar
  16. Ebraheem, A. M., Riad, S., Wycisk, P., & Seif El-Nasr, A. M. (2002). Simulation of impact of present and future groundwater extraction from the non-replenished Nubian Sandstone Aquifer in southwest Egypt. Environmental geology 43 (pp. 188–196).Google Scholar
  17. Ebraheem, A. M., Goramoon, H. K., Riad, S., Wycisk, P., & Seif El Nasr, A. M. (2003). Numerical modeling of groundwater resource management option in East Oweinat area. SW Egypt: Economic Geology, 44, 433–444.Google Scholar
  18. Eckstein, Y., & Eckstein, G. E. (2005). Transboundary aquifers: Conceptual models for development of international law. Ground Water 43 (679–690).Google Scholar
  19. Edmunds, W. M. (1999, November). Integrated geochemical and isotopic evaluation of regional aquifer systems in arid regions. In Proceedings, Regional Aquifer Systems in Arid Zones: Managing Non-renewable Resources, Tripoli, Libya (pp. 107–118). IHP-VI, Technical Documents in Hydrology No. 42. Paris: UNESCO.Google Scholar
  20. Edmunds, W. M. (2003). Renewable and non-renewable groundwater in semi-arid and arid regions. In A. S Alsharhan & W. W Wood (Eds.), Water resources perspectives: Evaluation, management and policy (pp. 265–280). Amesterdam: Elsevier.Google Scholar
  21. Foster, S., Nanni, M., Kemper, K., Garduño, H., & Tuinhof, A. (2006) Utilization of non-renewable groundwater, a socially-sustainable approach to resource management. The World Bank Sustainable Groundwater Management Concept & Tool Brief Note Series Note 11, p. 6.Google Scholar
  22. Fritz, P., Silva, C., Suzuki, O., & Salati, E. (1981). Isotope hydrology of groundwater in the Pampa del Tamarugal, Chile. Journal of Hydrology, 53, 161–184.CrossRefGoogle Scholar
  23. Gleeson, T., VanderSteen, J., Sophocleous, M. A., Taniguchi, M., Alley, W. M., Allen, D. M., et al. (2010). Groundwater sustainability strategies: Nature Geoscience, 3, 378–379.Google Scholar
  24. Gossel, W., Ebraheem, A. M., & Wycisk, P. (2004). A very large scale GIS-based groundwater flow model for the Nubian sandstone aquifer in Eastern Sahara (Egypt, northern Sudan and eastern Libya). Hydrogeology Journal, 12, 698–713.CrossRefGoogle Scholar
  25. Great Artesian Basin Consultative Council. (1998). Great Artesian Basin Resource Study Summary. Canberra: Great Artesian Basin Consultative Council.Google Scholar
  26. Great Man-Made River Authority. (2008). GMRA. Retrieved November 25, 2008, from
  27. Grosjean, M., & Veit, H. (2005). Water resources in the arid mountains of the Atacama Desert (Northern Chile): Past climate changes and modern conflicts. In U. M Huber., H. K. M. Bugmann, & M. A. Reasoner (Eds.), Global change and mountain regions. An overview of current knowledge (pp. 93–104). Dordrecht: Springer.Google Scholar
  28. Habermehl, M. A. (1985). Groundwater in Australia. In Hydrogeology in the service of man, memoires of the 18th Congress of International Associations of Hydrogeologists (pp. 31–52). UK: Cambridge.Google Scholar
  29. Habermehl, M. A. (2001). Hydrogeology of the Great Artesian Basin, Australia. In Proceedings, Regional Aquifer Systems in Arid Zones: Managing Non-renewable Resources, Tripoli, Libya (pp. 123–142). 20–24 November, 1999. Paris: UNESCO.Google Scholar
  30. Heinl, M., & Brinkmann, P. J. (1989). A groundwater model of the Nubian aquifer system: Hydrological Sciences Journal, 34, 425–447.Google Scholar
  31. Herczeg, A. L. (2008). Background report on the Great Artesian Basin. Australia: A Report to the Australian Government from the CSIRO Murray-Darling Basis Sustainable Yields Project; CSIRO.Google Scholar
  32. Houston, J., & Hart, D. (2004). Theoretical head decay in closed basin aquifers: an insight into fossil groundwater and recharge events in the Andes of northern Chile. Quarterly Journal of Engineering Geology and Hydrogeology, 37, 131–139.CrossRefGoogle Scholar
  33. Houston, J. (2002). Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Journal of Hydrology, 16, 3019–3035.Google Scholar
  34. Issar, A. S., & Nativ, R. (1988). Water beneath the deserts. Keys to the past a resource for the present Episodes, 11(4), 256–262.Google Scholar
  35. Issar, A. (1985 July). Fossil water Under the Sinai-Negev (pp. 104–111). Peninsula: Scientific American.Google Scholar
  36. Issar, A. S. (2008). Progressive development in arid environments: adapting the concept of sustainable development to a changing world. Hydrogeology Journal, 16, 1229–1231.CrossRefGoogle Scholar
  37. Karam, S. (2008, January 8). Saudi scraps wheat growing to save water. Middle East.Google Scholar
  38. Khouri, J. (2001). Impacts of intensive development on regional aquifer systems in arid zones. In Proceedings, Regional Aquifer Systems in Arid Zones—Managing Non-renewable Resources, Tripoli, Libya (pp. 339–365), 20–24 November 1999. Paris: UNESCO.Google Scholar
  39. Llamas, M. R. (2001). Considerations on ethical issues in relation to groundwater development and/or mining. In Proceedings, Regional Aquifer Systems in Arid Zones: Managing Non-renewable Resources, Tripoli, Libya (pp. 475–487), 20–24 November 1999. Paris: UNESCO.Google Scholar
  40. Llamas, M. R. (2004). Water and ethics. Use of groundwater. Paris: UNESCO International Hydrogeological Programme.Google Scholar
  41. Llamas, M. R. (2005). and Martínez-Santos. Intensive groundwater use: a silent revolution that cannot be ignored: Water Science & Technology, 51(8), 167–174.Google Scholar
  42. Loucks, D. P., & Gladwell, J. S. (1999). Sustainability Criteria for Water Resources Systems: Cambridge. UK: Cambridge University Press, International Hydrology Series.Google Scholar
  43. Madaleno, I. M., & Gurovich,  . (2007). Conflicting water usages in northern Chile. Boletín de al Asociación de Geógrafos Españoles, 45, 439–443.Google Scholar
  44. Magaritz, M., Aravena, R., Peña, H., & Grilli, A. (1990). Source of ground water in the deserts of Northern Chile: Evidence of deep circulation of ground water from the Andes. Ground Water, 28, 513–517.CrossRefGoogle Scholar
  45. Mamou, A., Besbes, M., Abdous, B., Latrech, D. J., & Fezani, C. (2006). North Western Sahara Aquifer System. In S. Foster & D. P Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially-sustainable management for water-policy makers, IHP-Vim Series on Groundwater 10, (pp. 68–74). Paris: UNESCO.Google Scholar
  46. Margat, J, Foster, S., & Droubi, A. (2006). Concept and importance of non-renewable resources. In S. Foster & D. P Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially-sustainable management for water-policy makers (pp. 13–24). Paris: UNESCO.Google Scholar
  47. Maxey, G. B. (1968). Hydrogeology of desert basins. Hydrogeology Journal, 6(5), 10–22.Google Scholar
  48. Mentor, J., Jr. (2001). Trading water, trading places: Water marketing in Chile and the western United States. In Groundwater and water resources management: The changing value of water AWRA/IWLRI. Dundee: University of Dundee International Specialty Conference.Google Scholar
  49. Montgomery, E. L., Rosko, M. J., Castro, S. O., Keller, B. R., & Bevacqua, R. S. (2003). Interbasin underflow between closed Altiplano basins in Chile. Ground Water, 41, 523–531.CrossRefGoogle Scholar
  50. Nanni, M., Burchi, S., Mechlem, K., & Stephan, R. M. (2006). Legal and Institutional Considerations. In S. Foster & D. P Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially-sustainable management for water-policy makers (pp. 49–58). Paris: UNESCO.Google Scholar
  51. National Research Council. (1997). Valuing Ground Water, Economic Concepts and Approaches. Washington: National Academy Press.Google Scholar
  52. Neary, D. G., & Garcia-Chevesich, P. (2008). Climate change impacts on municipal, mining, and agricultural water supplies in Chile. Hydrology and Water Resources in Arizona and the Southwest, 38, 53–57.Google Scholar
  53. Patterson, L. J., Sturchio, N. C., Kennedy, B. M., van Soest, M. C., Sultan, M., Lu, Z.-T., Lehmann, B., Purtschert, R., El Alfy, Z., El Kaliouby, B., Dawood, Y., & Abdallah, A. (2005). Cosmogenic, radiogenic, and stable isotopic constraints on groundwater residence time in Nubian Aquifer, Western Desert of Egypt. Geochemistry, Geophysics, Geosystems 6 Q01005. doi: 10.1029/2004GC00077 .
  54. Ponder, W. F. (2002). Desert Springs of the Australian Great Artesian Basin. In Conference Proceedings. Spring-Fed Wetlands. Las Vegas: Important Scientific and Cultural Resources of the Intermountain Region. Retrieved from (
  55. Postel, S. (1992). Last oasis. Facing water scarcity (pp. 239). New York: WW Norton.Google Scholar
  56. Puri, S., Margat, J., Yurtsever, Y., & Wallin, B. (2006). Aquifer characterization techniques. In S. Foster & D. P Loucks (Eds.), Non-renewable groundwater resources. A guidebook on socially- sustainable management for water-policy makers (pp. 35–47).Paris: UNESCO.Google Scholar
  57. Reboucas, A. C. (1999). Groundwater resources in South America. Episodes, 22, 232–237.Google Scholar
  58. Robinson, C. A., Werwer, A., El Baz, F., El-Shazly, M., Fritch, T., & Kusky, T. (2007). The Nubian Aquifer in Southwest Egypt. Hydrogeology Journal, 15, 33–45.CrossRefGoogle Scholar
  59. Rodríguez, J. M. (2006). The Monturaqui—Negrillas—Tilopozo aquifer of Chile. In S. Foster & Loucks, D. P (Eds.), Non-renewable groundwater resources. A guidebook on socially- sustainable management for water-policy makers, IHP-Vim Series on Groundwater No. 10 (pp. 89–92). Paris: UNESCO.Google Scholar
  60. Salem, O. (2007). Management of shared groundwater basins in Libya. African Water Journal, 1(1), 106–177.Google Scholar
  61. Shomaker, J. (2007). What shall we do with all this ground water? Natural Resources Journal, 47, 781–791.Google Scholar
  62. Squeo, F. A., Aravena, R., Aguirre, E., Pollastri, A., Jorquera, B., & Ehleringer, J. R. (2006). Groundwater dynamics in a coastal aquifer in north-central Chile: implications for groundwater recharge in an arid ecosystem. Journal of Arid Environments, 67, 240–254.CrossRefGoogle Scholar
  63. Sturchio, N. C., Du, X., Purtschert, R., Lehmann, B. E., Sultan, M., Patterson, L. J., et al. (2004). One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophysics Research Letters, 31, 05503. doi:  10.1029/2003GL01923.CrossRefGoogle Scholar
  64. Sultan, M., Yan, E., Sturchio, N., Wagdy, A., Abdel Gelil, K., Becker, R., et al. (2007). Natural discharge: a key to sustainable utilization of fossil groundwater. Journal of Hydrology, 335, 25–36.CrossRefGoogle Scholar
  65. Suzuki, O. (2007). The future of Northern Chile and water resources: Port of Entry Retrieved March 23, 2010 from
  66. Thorweihe, U., & Heinl, M. (1999). Groundwater resources of the Nubian Aquifer System. In Proceedings Regional Aquifer Systems in Arid Zones—Managing Non-Renewable Resources Tripoli, Libya (pp. 239–251). 20–24 November, 1999. IHP-VI Tcehnical Documents in Hydrology. Paris: UNESCO.Google Scholar
  67. Vengosh, A., Hening, S., Ganor, J., Mayer, B., Weyhenmeyer, C. E., Bullen, T. D., et al. (2007). New isotopic evidence for the origin of groundwater from the Nubian Sandstone Aquifer in the Negev, Israel. Applied Geochemistry, 22, 1052–1073.CrossRefGoogle Scholar
  68. Vengosh, A., Hirschfield, D., Vinson, D., Dwyer, G., Raanan, H., Rimawi, O., et al. (2009). High naturally occurring radioactivity in fossil groundwater from the Middle East. Environmental Science and Technology, 43, 1769–1775.CrossRefGoogle Scholar
  69. Watkins, J. (2006, March 18). Libya’s thirst for ‘fossil water’. London: BBC World Service.Google Scholar
  70. Younger, R. A. (1992). Managing aquifer over-exploitation and policies. In I. Simmers, F. Villarroya & L. F Rebollo (Eds.) Selected papers on overexploitation (pp. 199–222). Hannover: Heise.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations