Skip to main content

Groundwater Flow and Solute-Transport Modeling

  • Chapter
  • First Online:
Arid Lands Water Evaluation and Management

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Numerical modeling has become an integral component of most water-resources investigations. The primary objective of groundwater modeling is the prediction of aquifer responses to current and future groundwater use and other hydrologic changes. An additional benefit of groundwater modeling is that it can provide insights on the properties of hydrologic systems through the calibration process. Two basic types of modeling have wide applications for groundwater resources modeling: flow and solute transport. Groundwater flow models simulate the hydraulic behavior of the aquifer such as the flow of water, changes in volume of water in storage, and changes in aquifer water levels or heads (pressure). Solute-transport models simulate the fate and transport of dissolved constituents in groundwater, which include salts and contaminants. Additional common types of modeling include heat-flow and integrated surface water-groundwater interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. P., & Woessner, M. W. (1992). Applied groundwater modeling, simulation of flow and advective transport. San Diego: Academic Press.

    Google Scholar 

  • Bredehoeft, J. (2005). The conceptualization model problem—surprise? Hydrogeology Journal, 13, 37–46.

    Article  Google Scholar 

  • Chung, H.-M., Kim, N.-W., Lee, J., & Sophocleous, M. (2010). Assessing distributed groundwater recharge using integrated surface water-groundwater modeling. Hydrogeology Journal, 18, 1253–1264.

    Article  Google Scholar 

  • DHI Software (2007). MIKE SHE uses manual (Vol. 1). User Guide.

    Google Scholar 

  • Diersch H. J. (1998). FEFLOW: Interactive, graphics-based finite-element simulation system for modeling groundwater flow, contaminant mass and heat transport processes. In Getting started; user’s manual; reference manual, version 4.6. Berlin, Germany; WASY, Institute for Water Resources Planning and System Research Ltd.

    Google Scholar 

  • Doherty, J. (2005). PEST: model-independent parameter estimation (5th ed.). Brisbane, Australia: Watermark Numerical Computing.

    Google Scholar 

  • Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology (2nd ed.). New York: Wiley.

    Google Scholar 

  • Fetter, C. W. (2001). Applied hydrogeology (4th ed.). New Jersey: Englewood Cliffs Prentice Hall.

    Google Scholar 

  • Guo, W., & Langevin, C. D. (2002). User’s guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow. U.S. Geological Survey Open-File Report, 01-434.

    Google Scholar 

  • Harbaugh, A. W. (2005). MODFLOW-2005, the U.S. Geological survey modular ground-water model–the ground-water flow process. U.S. Geological Survey Techniques and Methods, 6-A16

    Google Scholar 

  • Hemker, C. J., & de Boer, R. G. (2009). MicroFem (Version 4.10.02).

    Google Scholar 

  • Herczeg, A. L., & Leaney, F. W. (2011). Review: Environmental tracers in arid-zone hydrology. Hydrogeology Journal, 19(1), 17–30.

    Article  Google Scholar 

  • Herrmann, R. (2006). ASR well field optimization un unconfined aquifers in the Middle East. In Recharge systems for protecting and enhancing groundwater resources, proceedings of the 5th international symposium on management of aquifer recharge (pp. 109–114). Berlin, Germany, Paris: UNESCO. 11–16 June 2005.

    Google Scholar 

  • Hill, M. C., & Tiedeman, C. R. (2007). Effective groundwater model calibration: With analysis of data, sensitivities, predictions, and uncertainty. Hoboken, NJ: Wiley-Interscience.

    Google Scholar 

  • Hoffmann, J., Galloway, D. L., & Zebker, H. A. (2003a). Inverse modeling of interbed storage parameters using land subsidence observations. Antelope Valley, California: Water Resources Research, 39(2), 1031. doi:10.1029/2001WR001252,2003.

    Google Scholar 

  • Hoffmann, J., Leake, S. A., Galloway, D. L., & Wilson, A. M. (2003b). MODFLOW-2000 ground-water model–user guide to the subsidence and aquifer-system compaction (SUB) package. U.S. Geological Survey Open-File Report 03-233.

    Google Scholar 

  • Hunt, R. J., Doherty, J., & Tonkin, M. J. (2007). Are models too simple? Arguments for Increased Parameterization: Ground Water, 45, 254–262.

    Article  Google Scholar 

  • Kim, N. W., Chung, I. M., Won, Y. S., & Arnold, J. G. (2008). Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology, 356, 1–16.

    Article  Google Scholar 

  • Kipp, K. L., Jr. (1987). HST: A computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems. U.S. Geological Survey Water-Resources Investigations Report 86-4095.

    Google Scholar 

  • Kipp, K. L., Jr. (1997). Guide to the revised heat and solute transport simulator; HST3D (Version 2). U.S. Geological Survey Water-Resources Investigations Report 97-4157.

    Google Scholar 

  • Langevin, C. D., Thorne, D. T., Jr., Dausman, A. M., Sukop, M. C., & Weixing, G. (2008). SEAWAT version 4: a computer program for simulation of multi-species solute and heat transport. U.S. Geological Survey Techniques and Methods Book 6, Chapter A22.

    Google Scholar 

  • Leake, S. A., & Galloway, D. L. (2007). MODFLOW ground-water model—user guide to the subsidence and aquifer-system compaction package (sub-wt) for water-table aquifers. U.S. Geological Survey, Techniques and Methods 6-A23.

    Google Scholar 

  • Leake, S. A., & Prudic, D. E. (1991). Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model. U.S. Geological Survey Techniques of Water—Resources Investigations, book 6, chapter. A2.

    Google Scholar 

  • Leavesley, G. H., Lichty, R. W., Troutman, B. M., & Saindon, L. G. (1983). Precipitation-runoff modeling system: user’s manual. U.S. Geological Survey Water-Resources Investigations Report 83-4238.

    Google Scholar 

  • Leavesley, G. H., Markstrom, S. L., Viger, R. J., & Hay, L. E. (2005). USGS modular modeling system (MMS)—precipitation-runoff modeling system (PRMS) NMS-PRMS. In V. Singh & D. Frevert (Eds.), Watershed models (pp. 159–177). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Lloyd, J. W. (2004). Do we adequately understand the potential value of our regional aquifers? Proceedings, International Conference on Water Resources in Arid Environments.

    Google Scholar 

  • Lloyd, J. W. (2007). The difficulties of regional groundwater resources assessments in arid regions. Arabian Journal for Science and Engineering, 32(1C), 35–47.

    Google Scholar 

  • Maliva, R. G., & Missimer, T. M. (2010). Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design, and operation. Houston, Schlumberger Water Services, Methods in Water Resources Evaluation Series.

    Google Scholar 

  • Markstrom, S. L., Niswonger, R. G., Regan, R. S., Prudic, D. E., & Barlow, P. M. (2008). GSFLOW—couple ground-water and surface-water flow model based in the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). U.S. Geological Survey Techniques and Methods 6-D1.

    Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground water flow model. U.S. Geological Survey Techniques of Water-Resources Investigation Report 06-A1.

    Google Scholar 

  • Missimer, T. M., Maliva, R. G., & Guo, W. (2010). Sustainability and the management of water resources in Florida. In F. Bloetcher (Ed.), Sustainable water resources: A compendium of issues and trends (pp. 153–161). Denver: American Water Works Association.

    Google Scholar 

  • National Research Council (2008). Prospects for managed underground storage of recoverable water. Washington, DC: National Academy Press.

    Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., & Belitz, M. (1994). Verification, validation, and confirmation of numerical models in the Earth Sciences. Science, 263, 641–646.

    Article  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). PHREEQC (Version 2)—A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-42549.

    Google Scholar 

  • Poeter, E. (2007). “All models are wrong, how do we know which are useful?”—looking back at the Darcy lecture tour. Ground Water, 45(4), 390–391.

    Article  Google Scholar 

  • Poeter, E., & Hill, M. C. (1997). Inverse models: A necessary next step in ground-water modeling. Ground Water, 35(2), 250–260.

    Article  Google Scholar 

  • Pollock, D. W. (1994). User’s guide for MODPATH/MODPATH-PLOT Version 2: A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model. U.S. Geological Survey Open-File Report 94-464.

    Google Scholar 

  • Prommer, H., Barry, D. A., & Zheng, C. (2003). MODFLOW/MT3DMS based reactive multi-component transport modeling. Ground Water, 41, 347–257.

    Article  Google Scholar 

  • Radcliff, D., & Šimůnek, J. (2010). Soil physics with HYDRUS: Modeling and applications. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Sanford, W. (2011). Calibration of models using groundwater age. Hydrogeology Journal, 19, 13–16.

    Article  Google Scholar 

  • Sophocleous, M. A., Koelliker, J. K., Govindaraju, R. S., Birdie, T., Ramireddygari, S. R., & Perkins, S. P. (1999). Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology, 214, 179–196.

    Google Scholar 

  • Sophocleous, M. A., & Perkins, S. P. (2000). Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology, 236, 185–201.

    Article  Google Scholar 

  • Voss, C. I., & Provost, A. M. (2002). SUTRA, A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. U.S. Geological Survey Water-Resources Investigations Report 02-4231.

    Google Scholar 

  • Zheng, C., & Bennett, G. D. (2002). Applied contaminant transport modeling (2nd ed.). New York: Wiley.

    Google Scholar 

  • Zheng, C., & Wang, P. P. (1999). MT3DMS: A modular three-dimensional multi-species model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: Documentation and user’s guide. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, report SERDP-99-1.

    Google Scholar 

  • Zhu, C., & Murphy, W. M. (2000). On radioactive dating of ground water. Ground Water, 38, 802–804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliva, R., Missimer, T. (2012). Groundwater Flow and Solute-Transport Modeling. In: Arid Lands Water Evaluation and Management. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_20

Download citation

Publish with us

Policies and ethics