Borehole Geophysical Techniques

  • Robert Maliva
  • Thomas Missimer
Part of the Environmental Science and Engineering book series (ESE)


In arid lands water resources investigations, it is important to maximize the amount of data that is obtained from the drilling of test or exploratory wells. A key means of obtaining detailed data on the groundwater system being investigated is through borehole geophysical logging. Valuable hydrogeological data can be obtained from both newly drilled and existing wells. Borehole geophysical logging techniques allow for the continuous in situ measurement of the petrophysical properties and composition of the penetrated rock, sediment, and formation fluids. Borehole geophysical logging has long been a critical tool in the oil and gas industry because of the wealth of data that it can cost-effectively provide.


Drilling Fluid Borehole Wall Borehole Diameter Groundwater Investigation Borehole Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen, D., Flaum, C., Ramakrishnan, T. S., Bedford, J., Castelijns, K., Fairhurst, D., et al. (2000). Trends in NMR logging: Oilfield review, 12(3), 2–19.Google Scholar
  2. Asquith, C., & Krygowski, S. (2004). Basic well log analysis (2nd ed., Vol. 16). American association of petroleum geologists methods in exploration.Google Scholar
  3. Barson, D., Christensen, R., Decoster, E., Grau, J., Herron, M., Herron, S., et al. (2005). Spectroscopy: The key to rapid reliable petrophysical answers. Oilfield Review, 17(2), 14–33.Google Scholar
  4. Coates, G. R., Xiao, L., & Prammer, M. G. (1999). NMR logging, principles and applications. Houston: Halliburton Energy Services.Google Scholar
  5. Collier, H. A. (1993). Borehole geophysical techniques for determining the water quality and reservoir parameters of fresh and saline water aquifers in Texas (2 Vols.). Austin, TX: Texas Water Development Board Report 343.Google Scholar
  6. Cunningham, K. J., Carlson, J. L., Wingard, G. L., Robinson, E., & Wacker, M. A. (2004). Characterization of aquifer heterogeneity using cyclostratigraphy and geophysical methods in the upper part of the karstic Biscayne Aquifer. Southeastern Florida: U.S. Geological Survey Water-Resources Investigations Report 03-4208.Google Scholar
  7. Dinwiddie, C. L., Foley, N. A., & Molz, F. J. (1999). In-well hydraulics of the electromagnetic flowmeter. Ground Water, 37, 305–315.CrossRefGoogle Scholar
  8. Driscoll, F. G. (1986). Groundwater and wells (2nd ed.). St. Paul, Minnesota: Johnson Filtration Systems.Google Scholar
  9. Freedman, R. (2006). Advances in NMR logging. Journal of Petroleum Technology, 58(1), 60–66.CrossRefGoogle Scholar
  10. Hess, A. E. (1982). A heat-pulse flowmeter for measuring low velocities in boreholes. U.S. Geological Survey Open File Report 82-699.Google Scholar
  11. Hurley, N. F. (2004). Borehole images, In C. Asquith & S. Krygowski (eds.), Basic well log analysis (2nd ed.). American Association of Petroleum Geologists Methods in Exploration.Google Scholar
  12. Javandel, I., & Witherspoon, P. A. (1969). A method of analyzing transient fluid flow in multi-layered aquifers. Water Resources Research, 5, 856–869.CrossRefGoogle Scholar
  13. Kabala, Z. J. (1994). Measuring distribution of hydraulic conductivity and specific storage by the double flowmeter test. Water Resources Research, 30, 685–690.CrossRefGoogle Scholar
  14. Kenyon, B., Kleinberg, R., Straley, C., Gubelin, G., & Morriss, C. (1995). Nuclear magnetic resonance imaging—technology for the 21st century. Oilfield Review, 7(3), 19–33.Google Scholar
  15. Keys, W. S. (1989). Borehole geophysics applied to ground water investigations. Dublin: National Water Well Association.Google Scholar
  16. Keys, W. S. (1990). Borehole geophysics applied to ground-water investigations. Techniques of water-resources investigations of the United States Geological Survey, Book 2, Chapter E2.Google Scholar
  17. Keys, W. S. (1997). A practical guide to borehole geophysics in environmental investigations. Boca Raton: Lewis Publishers.Google Scholar
  18. Kobr, M., Mareš, S, & Paillet, F. (2005). Borehole geophysics for hydrogeological studies: Principles and applications. In Y. Rubin & S. S. Hubbard (Eds.), Hydrogeophysics. (pp. 291–331). Dordrecht: Springer.Google Scholar
  19. Lovell, M. A., Williamson, G., & Harvey, P. K. (1999). Borehole imaging: Applications and case studies. Geological Society of London Special Publication no. 159.Google Scholar
  20. Maliva, R. G., & Missimer, T. M. (2010). Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design, and operation. Houston, Schlumberger Water Services, Methods in Water Resources Evaluation Series No. 2.Google Scholar
  21. Maliva, R. G., Clayton, E. A., & Missimer, T. M. (2009). Application of advanced borehole geophysical logging to managed aquifer recharge investigations. Hydrogeology Journal, 17, 1547–1556.CrossRefGoogle Scholar
  22. Molz, F. J., Güven, O, & Melville, J. G. (1990). A new approach and methodologies for characterizing the hydrogeologic properties of aquifers. U. S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory. Ada, Oklahoma Report EPA/600/2-90/002.Google Scholar
  23. Molz, F. J., Boman, G. K., Young, S. C., & Waldrop, W. R. (1994). Borehole flowmeters: Field applications and data analysis. Journal of Hydrology, 163, 347–371.CrossRefGoogle Scholar
  24. Molz, F. J., Morin, R. H., Hess, A. E., Melville, J. G., & Güven, O. (1989). The impeller meter for measuring aquifer permeability variations: evaluation and comparison with other tests. Water Resources Research, 25, 1677–1683.CrossRefGoogle Scholar
  25. Paillet, F. L. (1998). Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resources Research, 34, 997–1010.CrossRefGoogle Scholar
  26. Paillet, F. L., & Crowder, R. E. (1996). A generalized approach for the interpretation of geophysical well logs in ground-water studies: Ground Water, 34, 663–898.Google Scholar
  27. Paillet, F. L., & Reese, R. S. (2000). Integrating boreholes logs and aquifer tests in aquifer characterization. Ground Water, 38, 713–725.CrossRefGoogle Scholar
  28. Roberson, S., & Hubbard, B. (2010). Application of borehole optical televiewing to investigation the 3-D structure of glaciers: Implications for the formation of longitudinal debris ridges, midre Lovénbreen, Svalbard. Journal of Glaciology, 56, 143–156.Google Scholar
  29. Schlumberger (1977). Log interpretation charts. Houston: Schlumberger.Google Scholar
  30. Schlumberger (1989). Log interpretation principles/applications. Schlumberger: Sugarland, Texas.Google Scholar
  31. Williams, J. H., & Johnson, C. D. (2004). Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. Journal of Applied Geophysics, 55(1–2), 151–159.CrossRefGoogle Scholar
  32. Wyllie, M. R. J., Gregory, A. R., & Gardner, G. H. F. (1958). An experimental investigation of the factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493.CrossRefGoogle Scholar
  33. Young, M. E., de Bruijn, R. G. M., & bin Salim Al-Ismaily, A. (1998) Exploration of an alluvial aquifer in Oman by time-domain electromagnetic soundings: Hydrogeology Journal, 6, 383–393.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations