Advertisement

Compaction and Land Subsidence

  • Robert Maliva
  • Thomas Missimer
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Introduction

It is well documented that groundwater abstractions can induce land subsidence in many arid lands where groundwater is the only viable water source (e.g., Cuevas 1936; Domenico et al. 1966; Poland and Davis 1956; Poland 1961, 1970; Poland et al. 1975; Tolman and Poland 1940; Wilson and Grace 1942; Winslow and Wood 1959). Within the United States, an area of more than 26,000 km 2 (10,039 mi 2) has been permanently lowered as the result of withdrawal of underground fluids (National Research Council 1991; Holzer and Galloway 2005). Land subsidence induced by groundwater pumpage was reviewed by Galloway et al. ( 1999a, b), Holzer and Galloway ( 2005), and Galloway and Burbey ( 2011). The land subsidence in the San Joaquin Valley, California, USA, (Figs.  15.1 and 15.2), which was caused largely by groundwater pumping for irrigation, was observed by Galloway and Riley ( 1999, p. 23) to be “one of the single largest alterations of the land surface attributed to mankind”.

Keywords

Global Position System Effective Stress Land Subsidence Synthetic Aperture Radar Global Position System Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arizona Land Subsidence Group. (2007). Land surface and earth fissures in Arizona. Arizona Geological Society Contributed Report CR-07-C.Google Scholar
  2. Bawden, G. W., Sneed, N., Stork, S. V., & Galloway, D. L. (2003). Measuring human-induced land subsidence from space. U.S. Geological Survey Fact Sheet 069-03.Google Scholar
  3. Behr, J. A. (2001). Global positioning system (GPS) applications for deformation monitoring. Geotechnical instrumentation for field measurements, University of Florida’s Division of Continuing Education. (www.orionmonitoring.com/Assets/GPS%20Monitoring.pdf).
  4. Bürgmann, R., Rosen, P. A., & Fielding, E. J. (2000). Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annual Review of Earth and Planetary Sciences, 28, 169–209.CrossRefGoogle Scholar
  5. Cabral-Cano, E., Dixon, T. H., Miralles-Wilhelm, F., Díaz-Molina, O., Sánchez-Zamora, O., & Carande, R. E. (2008). Space geodetic imaging of rapid ground subsidence in Mexico City. Geological Society of America Bulletin, 120, 1556–1566.CrossRefGoogle Scholar
  6. Calderhead, A. I., Therrien, R., Rivera, A., Martel, R., & Garfias, J. (2011). Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley. Mexico: Advances in Water Resources, 34, 83–97.CrossRefGoogle Scholar
  7. Carpenter, M.C. (1999). South-Central Arizona. In D. Galloway, D. R. Jones, & S. E. Ingebritsen (Eds.), Land subsidence in the United States: U.S. Geological survey circular 1182 (pp. 65–78).Google Scholar
  8. Carruth, R. L., Pool, D. R., & Anderson, C. E. (2007). Land subsidence and aquifer-system compaction in the Tucson Active Management Area, south-central Arizona, 1987–2005. U.S. Geological Survey Scientific Investigations Report 2007–5190.Google Scholar
  9. Chen, C., Pei, S., & Jiao, J. J. (2003). Land subsidence caused by groundwater exploitation in Suzhou City. China: Hydrogeology Journal, 11(2), 275–287.Google Scholar
  10. Cuevas, J. A. (1936). Foundation conditions in Mexico City. Proceedings of the International Conference on Soil Mechanics, Cambridge, MA 3, 233–237.Google Scholar
  11. Domenico, P. A., Mifflin, M. D., & Mindling, A. L. (1966). Geologic controls on land subsidence in Las Vegas Valley. In Proceedings of the Annual Engineering Geology, Soil Engineering Symposium, Moscow, Idaho, pp. 113–121.Google Scholar
  12. Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459–1486.CrossRefGoogle Scholar
  13. Galloway, D. & Riley, F. S. (1999). San Joaquin Valley, California. In D. Galloway, D. R. Jones & S. E. Ingebritsen (Eds.), Land subsidence in the United States: U.S. Geological Survey Circular, 1182, (pp. 23–34).Google Scholar
  14. Galloway, D. L., & Hoffmann, J. (2007). The application of satellite differential SAR interferometry-derived groundwater displacements in hydrogeology. Hydrogeology Journal, 15, 133–154.CrossRefGoogle Scholar
  15. Galloway, D. L., Hudnut, K. W., Ingebritsen, S. E., Phillips, S. P., Peltzer, G., Rogez, F., et al. (1998). Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar. Antelope Valley, Mojave Desert, California: Water Resources Research, 34, 2573–2585.Google Scholar
  16. Galloway, D., Jones, D. R., & Ingebritsen, S. E. (1999a) Land subsidence in the United States. U.S. Geological Survey Circular 1182.Google Scholar
  17. Galloway, D., Ingebritsen, S. E., Riley, F. S., Ikehara, M. E., & Carpenter, M. C. (1999b). Land subsidence in the United States. In D. Galloway, D. R. Jones, & S. E. Ingebritsen (Eds.), Land subsidence in the United States: U.S. Geological Survey Circular 1182 (pp. 141–158).Google Scholar
  18. Galloway, D., Jones, D. R. & Ingebritsen, S. E. (2000). Land subsidence in the United States. U.S. Geological Survey Fact Sheet 165-00.Google Scholar
  19. Gelt, J. (1992). Land subsidence, earth fissures change. Arizona’s Landscape, Arroyo, Summer 1992, 6(2).Google Scholar
  20. Hoffmann, J., Zebker, H. A., Galloway, D. L., & Amelug, F. (2001). Seasonal subsidence and rebound in Las Vegas Valley. Nevada, observed by synthetic aperture radar interferometry: Water Resources Research, 37, 1551–1566.Google Scholar
  21. Hoffmann, J., Galloway, D. L., & Zebker, H. A., (2003). Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources Research, 39(2), 1031. doi: 10.1029/2001WR001252.
  22. Holzer, T. L. & Galloway, D.L. (2005). Impacts of land subsidence caused by withdrawal of underground fluids in the United States. In J. Ehlen, W. C. Haneberg & R. A. Larson (Eds.), Humans as geologic agents: Geological Society of America reviews in engineering geology (Vol. XVI, pp. 87–99).Google Scholar
  23. Ingebrtitsen, S. E., & Jones, D. R. (1999). Santa Clara Valley, California. In D. Galloway, D. R. Jones & S. E. Ingebritsen (Eds.), Land subsidence in the United States: U.S. Geological Survey Circular 1182, (pp. 15–22).Google Scholar
  24. Leake, S. A. (2004). Land subsidence from ground-water pumping. U.S. Geological Survey. http://geochange.er.usgs.gov/sw/changes/anthropogenic/subside/.
  25. Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the earth’s surface. Reviews of Geophysics, 36(4), 441–500.CrossRefGoogle Scholar
  26. National Research Council. (1991). Mitigation losses from land subsidence in the United States. Washington, DC: National Academy Press.Google Scholar
  27. Ortega-Guerrero, A., Rudolph, D. L., & Cherry, J. A. (1999). Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35, 3327–3341.CrossRefGoogle Scholar
  28. Osmanoğla, B., Dixon, T. H., Wdowinski, S., Cabral-Cano, E., & Jiang, Y. (2010). Mexico City subsidence observed with persistent scatter INSAR. Journal of Applied Earth Observations and Geoinformation, 13(1), 1–12.Google Scholar
  29. Pavelko, M. T., Wood, D. B. & Laczniak, R. J. (1999). Las Vegas, Nevada. In D. Galloway, D. R. Jones & S. E. Ingebritsen (Eds.), Land subsidence in the United States: U.S. Geological Survey Circular 1182 (pp. 49–64).Google Scholar
  30. Phillips, S. P., Carlson, C. S., Metzger, L. F., Sneed, M., Galloway, D. L., Hudnut, K. W., et al. (2002). Optimal management of an ASR program to control land subsidence in Lancaster, California. In P. J. Dillon (Ed.), Management of aquifer recharge for sustainability, Lisse (pp. 361–366). A.A: Balkema.Google Scholar
  31. Phillips, S. P., Carlson, C. S., Metzger, L. F., Howle, J. F., Galloway, D. L., Sneed, M., Galloway, D. L., Ikehara, M. E., Hudnut, K. W. & King, N. E. (2003). Analysis of tests of subsurface injection, storage, and recovery of freshwater in Lancaster, Antelope Valley, California. U.S. Geological Survey Water-Resources Investigations Report 03-40611.Google Scholar
  32. Poland, J. F. (1961). The coefficient of storage in a region of major subsidence caused by compaction of an aquifer. U. S. Geological Survey Professional Paper, 424-B, 52–54.Google Scholar
  33. Poland, J.F. (1970). Land subsidence and aquifer-system compaction, Santa Clara Valley, California, USA. Proceedings of the Tokyo Symposium on Land Subsidence (Vol. 1, pp. 285–294). International Association of Scientific Hydrology and UNESCO, September 1969.Google Scholar
  34. Poland, J. F., et al. (1975) Land subsidence in the San Joquin Valley, California as of 1972. U. S. Geological Professional Paper 437-H.Google Scholar
  35. Poland, J. F., & Davis, G. H. (1956). Subsidence of the land surface in Tulare-Wasco (Delano) and Los Baons-Kettleman City area. San Joaquin Valley, California: Transactions of the American Geophysical Union, 37, 287–296.Google Scholar
  36. Riley, F. S. (1969). Analysis of borehole extensometer data from central California. In L. J. Tison (Ed.), Land subsidence: International Association of Hydrological Sciences Publication (Vol. 89, pp. 423–431). Wallingford: IAHS.Google Scholar
  37. Sneed, M., & Galloway, D. L. (2000). Aquifer-System Compaction: Analyses and simulations-the holly site, edwards air force base, Antelope Valley, California. U.S. Geological survey water-resources investigations report 00-4015.Google Scholar
  38. Terzaghi, K. (1936). The shear resistance of saturated soils. Proceedings First International Conference on Soil Mechanics & Foundation Engineering Cambridge, MA (Vol. 1, pp. 54–56).Google Scholar
  39. Tolman, C. F., & Poland, J. F. (1940). Ground-water infiltration and ground-surface recession in Santa Clara Valley. Santa Clara County, California: Transactions American Geophysical Union, 21, 23–34.Google Scholar
  40. Wilson, G., & Grace, H. (1942). The settlement of London due to underdrainage of the London clay. Journal of the Institute of Civil Engineering (London), 19, 100–127.Google Scholar
  41. Winslow, A. G., & Wood, L. A. (1959). Relation of land subsidence to groundwater withdrawals in the upper Gulf Coastal region of Texas. American Institute of Mining Engineers, Mining Division, Mining Engineering, 11, 1030–1034.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations