Advertisement

Microgravity

  • Robert Maliva
  • Thomas Missimer
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Gravity survey data can provide quantitative information on changes in the mass of water within an aquifer, which has obvious water resources value. The technique is particularly useful for unconfined aquifers that experience changes in water levels caused by pumping or recharge (natural or artificial). Unconfined alluvial aquifers are important water sources in many arid regions, so gravity surveys have applications for water-resources investigations in these regions.

Keywords

Vadose Zone Unconfined Aquifer Earth Tide Manage Aquifer Recharge Superconducting Gravimeter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, O. B., Seneviratne, S. I., Hinderer, J., & Viterbo, P. (2005). GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophysical Research Letters, 32, L18405, 4.Google Scholar
  2. Becker, M. W. (2006). Potential for satellite remote sensing of ground water. Ground Water, 44, 306–318.CrossRefGoogle Scholar
  3. Burger, H. R., Sheehan, A. F., & Jones, G. H. (2006). Introduction to applied geophysics: Exploring the shallow subsurface. New York: W. W. Norton.Google Scholar
  4. Cesanelli, A., & Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal, 19, 629–639.CrossRefGoogle Scholar
  5. Chapman, D. S., Sahm, E., & Gettings, P. (2008). Monitoring aquifer recharge using repeated high-precision gravity measurements: A pilot study in South Weber, Utah. Geophysics, 73(6), WA83–WA93.Google Scholar
  6. Davis, K., Li, Y., Batzle, M., & Raynolds, B. (2005). Time-lapse gravity monitoring of an aquifer storage recovery project in Leyden, Colorado. Golden: Colorado School of Mines, Center for Gravity, Electrical & Magnetic Studies.Google Scholar
  7. Davis, K., Li, Y., & Batzle, M. (2008). Time-lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics, 73(6), WA61–WA69.Google Scholar
  8. Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Korev, V., et al. (2003). Implementation of the Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research, 108, 8861. doi: 10.1029/2002JD003296.
  9. Günter, A., Schmidt, R., & Döll, P. (2007). Supporting large-scale hydrogeological monitoring and modeling by time-variable gravity data. Hydrogeology Journal, 15, 167–170.CrossRefGoogle Scholar
  10. Howle, J. F., Phillips, S. P., & Ikehara, M. E. (2002). Estimating water-table change using microgravity surveys during an ASR program in Lancaster, California. In P. Dillon (Ed.), Management of aquifer recharge for sustainability (pp. 269–272). Lisse: Swets & Zeitlinger.Google Scholar
  11. Maliva, R. G., Coulibaly, K., Guo, W., & Missimer, T. M. (2011). Confined aquifer loading: Implications for groundwater management. Ground Water, 49(3), 302–304.Google Scholar
  12. Milson, J. (2003). Field geophysics (3rd ed.). Chichester: Wiley.Google Scholar
  13. NASA. (2003). Studying the earth’s gravity from space: The Gravity Recovery and Climate Experiment (GRACE). NASA Facts. The Earth System Sciences Pathfinder Series, FS-2002-1-029-GSFC (rev. December 2003), p. 6.Google Scholar
  14. Pool, D. R. (2008). The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona. Geophysics, 73(6), WA49–WA59. doi: 10.1190/1.2980395.
  15. Pool, D. R., & Schmidt, W. (1997). Measurement of ground-water storage change and specific yields using the temporal-gravity method near Rillito Creek. Tucson, Arizona. U.S. Geological Survey Water Resources Investigations Report 97-4125.Google Scholar
  16. Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P., Hall, S., & Wilson, C. R. (2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 31, L20504, 4. doi: 10.1029/2004gl020873.
  17. Rodell, M., Chen, J., Kato, H., Famiglietti, J.-S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River Basin (USA) using GRACE. Hydrogeology Journal, 15, 159–166.CrossRefGoogle Scholar
  18. Rodell, M., Velicogna, I., & Framigletti, J. S. (2009). Satellite-based estimates of groundwater depletion in India. Nature, 460, 999–1002.CrossRefGoogle Scholar
  19. Strassberg, G., Scanlon, B.R., and Rodell, M., 2007, Comparison of seasonal terrestrial water storage variations from GRACE with ground-water level measurements from the High Plains Aquifer (USA). Geophysical Research Letters, 34, L14402, 5. doi: 10.1029/2007/GL030139.
  20. Strassberg, G., Scanlon, B. R., & Chambers, D. (2009). Evaluation of groundwater storage monitoring with the GRACE satellite: Case study of the High Plains aquifer, central United States. Water Resources Research, 45, W05410, 10. doi: 10.1029/2008WR006892.
  21. Swenson, S., & Wahr, J. (2002). Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. Journal of Geophysical Research, 113, B08410. doi: 10.1029/2001JB000576.
  22. Telford, W. M., Geldart, L. P., Sheriff, R. E., & Keys, D. A. (1976). Applied geophysics. Cambridge: Cambridge University Press.Google Scholar
  23. Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters. doi: 10.1029/2009GL039401.
  24. Turcotte D. L., & Schubert, G. (1982). Geodynamics: Applications of continuum physics to geological problems. New York: Wiley.Google Scholar
  25. Wahr, J., Swenson, S., Zlotnicki, V., & Velicogna, I. (2004). Time-variable gravity from GRACE: First results. Geophysical Research Letters, 31, L11501. doi: 10.1029/2004GL019779.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations