Advertisement

Environmental Isotopes

  • Robert Maliva
  • Thomas Missimer
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Environmental isotopes are useful tools for evaluating the source and time of precipitation of groundwater and geochemical reactions during groundwater flow (i.e., fluid–rock interactions). Such data can be used to estimate recharge rates, regional groundwater flow rates, and the time of emplacement of fossil groundwater. Isotopic analyses are not a routine element of water resources investigations largely because of their costs and the nature of the information they can provide. Environmental isotopic analyses have been typically applied to large (basin) scale investigations. Some of the applications of environmental isotopes have been of more academic than applied hydrogeological interest. For example, determination of the age of non-renewable groundwater resources usually does not have much bearing on current water management, so long as it is recognized that the groundwater is in fact non-renewable on a human time scale. From a practical perspective, it matters little if water is 10,000 years old or 1,000,000 years old.

Keywords

Dissolve Inorganic Carbon Meteoric Water Recharge Rate Local Meteoric Water Line Environmental Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bassett, R. L., Steinward, A., Jorat, S., Peterson, C., & Jackson, R. (2008). Forensic isotope analysis to refute a hydrologic conceptual model. Ground Water, 46, 372–383.CrossRefGoogle Scholar
  2. Blasch, K. W., & Bryson, J. R. (2007). Distinguishing sources of groundwater using δ2H and δ18O. Ground Water, 45, 294–308.CrossRefGoogle Scholar
  3. Clark, I., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton: Lewis Publishers.Google Scholar
  4. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.CrossRefGoogle Scholar
  5. Cresswell, R., Wischusen, J., Jacobson, G., & Fifield, K. (1999). Assessment of recharge to groundwater systems in the arid southwestern part of Northern Territory, Australia, using chlorine-36. Hydrogeology Journal, 7, 393–404.CrossRefGoogle Scholar
  6. Cunningham, E. E. B., Long, A., Eastoe, C., & Bassett, R. L. (1998). Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona. Hydrogeology Journal, 6, 94–103.CrossRefGoogle Scholar
  7. Druhan, J. L., Hogan, J. F., Eastoe, C. J., Hibbs, B. J., & Hutchinson, W. R. (2008). Hydrogeologic controls on groundwater recharge and salinization: A geochemical analysis of the northern Hueco Bolson aquifer, Texas, USA. Hydrogeology Journal, 16, 281–296.CrossRefGoogle Scholar
  8. Eastoe, C. J., Hibbs, B. J., Granados Olivas, A., Hogan, J. F., Hawley, J., & Hutchinson, W. R. (2008). Isotopes in the Hueco Bolson aquifer, Texas (USA) and Chihuahua (Mexico): Local and general implications for recharge sources in alluvial basins. Hydrogeology Journal, 16, 737–747.CrossRefGoogle Scholar
  9. Ekwurzel, B., Schlosser, P., Smethie, W. M., Plummer, L. N., Busenberg, E., & Michel, R. L., (1994). Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resources Research. 30, 1693–1708.Google Scholar
  10. Gonfiantini, R. (1986). Environmental isotopes in lake studies. In P. Fritz & J. C. Fontes (Eds.), Handbook of environmental isotope geochemistry (Vol. 2, pp. 113–168). New York: Elsevier.Google Scholar
  11. Hutchinson, W. R., & Hibbs, B. J. (2008). Ground Water budget analysis and cross-formational leakage in an arid basin. Ground Water, 46, 384–395.CrossRefGoogle Scholar
  12. Mazor, E., (2003). Chemical and isotopic groundwater hydrology (3rd ed.). New York: Marcel Dekkar.Google Scholar
  13. Mook, W. G. (2005). Introduction to isotope hydrology: stable and radioactive isotopes of hydrogen, carbon, and oxygen: IAH International Contributions to Hydrogeology 25. London: Taylor & Francis.Google Scholar
  14. Murad, A. A., & Krishnamurthy, R. V. (2003). Factors controlling groundwater quality in Eastern United Arab Emirates: A chemical and isotopic approach. Journal of Hydrology, 286, 227–235.CrossRefGoogle Scholar
  15. Plummer, M. A., Phillips, F. M., Fabryka-Martin, J., Turin, H. P., Wigand, P. E., & Sharma, P. (1997). Chlorine-36 in fossil rat urine: an archive of cosmogenic nuclide deposition during the past 40,000 years. Science, 277, 538–541.CrossRefGoogle Scholar
  16. Rozanski, K., Araguás-Araguás, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. In P. K. Swart et al. (Ed.), Climate change in continental isotopic records: Geophysical. Monograph Series 78 (pp. 1–36). Washington, DC: American Geophysical Union.Google Scholar
  17. Rueedi, U., (2002). Groundwater dating by 14C. In W. Kinzelbach, W. Aeschbach, C. Alberich, I. B. Goni, U. Beyerle, P. Brunner, W. -H. Chiang, J. Rueedi & K. Zoellmann (Eds.), A survey of methods from groundwater recharge in arid and semiarid regions: Early Warning and Assessment Report Series UNEP/DEWA/RS.02-2 (pp. 44–53). Nairobi, Kenya: United Nations Environment Programme.Google Scholar
  18. Scanlon, B. R. (2000). Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36, 395–409.CrossRefGoogle Scholar
  19. Schlosser, P., Stute, M., Dorr, H., Sonntag, C., & Munnich, K. O. (1988). Tritium/3He dating of shallow groundwater. Earth and Planetary Science Letters, 89, 353–362.CrossRefGoogle Scholar
  20. Schlosser, P., Stute, M., Sonntag, C., & Munnich, K. O. (1989). Tritogenic 3He in shallow groundwater. Earth and Planetary Science Letters, 94, 245–256.CrossRefGoogle Scholar
  21. Simpson, E. S., Thorud, D. B., & Friedman, I. (1970). Distinguishing seasonal recharge to groundwater by deuterium analysis in southern Arizona. International Association of Hydrologists Publication, 92, 112–121.Google Scholar
  22. Solomon, D. K., Schiff, S. L., Poreda, R. J., & Clarke, W. B. (1993). A validation of the 3H/3He method for determining groundwater recharge. Water Resources Research, 29, 2951–2962.CrossRefGoogle Scholar
  23. Solomon, D. K., & Sudicky, E. A. (1995). Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resources Research, 27, 2309–2319.CrossRefGoogle Scholar
  24. Sturchio, N. C., Du, X., Purtschert, R., Lehmann, B. E., Sultan, M., & Patterson, L. J., et al. (2004). One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36. Geophysics Research Letters 31, L. 05503, doi: 10.1029/2003GL01923.
  25. U.S. Geological Survey (1996). Collection, processing, and analysis of carbon isotope samples. National water quality laboratory technical memorandum 1996-05.Google Scholar
  26. Vrba, J., & Verhagen, B. T. (2006). Groundwater for emergency situations. A framework document: International Hydrological Program (IHP) VI, Series on Groundwater No. 12. Paris: UNESCO.Google Scholar
  27. Wahi, A. K., Hogan, Ekwurzel, B., Baillie, M. N., & Eastoe, C. J. (2008). Geochemical quantification of semiarid recharge. Ground Water, 46, 414–425.CrossRefGoogle Scholar
  28. Winograd, I. J., Riggs, A. C., & Coplen, T. B. (1998). The relative contributions of summer and cool-season precipitation to groundwater recharge, Springs Mountains, Nevada, USA. Hydrogeology Journal, 6, 77–93.CrossRefGoogle Scholar
  29. Zhu, C. (2000). Estimate of recharge from radiocarbon dating of groundwater and numerical flow and transport modeling. Water Resources Research, 36, 2607–2620.CrossRefGoogle Scholar
  30. Zhu, C., & Murphy, W. M. (2000). On radioactive dating of ground water. Ground Water, 38, 802–804.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations