Skip to main content

Recharge Measurement in Arid and Semiarid Regions

  • Chapter
  • First Online:
Arid Lands Water Evaluation and Management

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Measuring the rate of groundwater recharge is particularly difficult in arid and semiarid lands, which are characterized by great spatial and temporal variability in recharge. Measurements of a limited number of local (point) recharge rates over a short (several years) period does not provide data representative of basin-wide rates. Most of the recharge tends to occur during rare large rainfall events and the recharge may be concentrated to certain geographic areas such as wadis or depressions that capture runoff. It is therefore highly misleading to assess and express recharge rates in terms of mean annual recharge or recharge as a proportion of the mean annual rainfall.The recharge measurement program must be capable of capturing infrequent and localized pulses of recharge. An additional consideration is that recharge rates in arid and semiarid lands are usually small relative to the resolution and errors of the measurement methods. The uncertainty introduced by errors in recharge rate measurement or calculation is an important consideration for regional groundwater flow models that are used for water management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-ahmadi, M. E., & El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani Western Saudi Arabia. Journal of King Saud University (Science), 21, 179–190.

    Article  Google Scholar 

  • Allison, G. B., Gee, G. W., & Tyler, S. W. (1994). Soil Sciences Society America Journal, 58, 6–14.

    Article  Google Scholar 

  • Allison, G. B. (1988). A review of some of the physical chemical and isotopic techniques available for estimating groundwater recharge. In I. Simmers (Ed.), Estimation of natural groundwater recharge (pp. 49–72). North Atlantic Treaty Organization, Scientific Affairs Division

    Google Scholar 

  • Al-Shaibani, A. M. (2008). Hydrogeology and hydrochemistry of a shallow alluvial aquifer. western Saudi Arabia: Hydrogeology Journal, 16, 155–165.

    Google Scholar 

  • Batelaan, O., & de Smedt, F. (2007). GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology, 337, 337–355.

    Article  Google Scholar 

  • Beyerle, U. (2002). Groundwater dating using environmental tracers and black box models. In W. Kinzelbach, W. Aeschbach, C. Alberich, I. B. Goni, U. Beyerle, P. Brunner, W.-H. Chiang, J. Rueedi & K. Zoellmann (Eds.), A survey of methods from groundwater recharge in arid and semiarid regions: Early Warning and Assessment Report Series UNEP/DEWA/RS.02-2 (pp. 32–37). United Nations Environment Programme, Nairobi, Kenya.

    Google Scholar 

  • Boulton, N. S. (1963). Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Institute of Civil Engineers Proceedings (London), 26, 469–482.

    Article  Google Scholar 

  • Bourdon, D. J. (1977). Flow of fossil groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 10, 97–124.

    Article  Google Scholar 

  • Busenberg, E., & Plummer, L. N. (1992). Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of Central Oklahoma. Water Resources Research, 28, 2257–2283.

    Article  Google Scholar 

  • Chung, H.-M., Kim, N.-W., Lee, J., & Sophocleous, M. (2010). Assessing distributed groundwater recharge using integrated surface water-groundwater modeling. Hydrogeology Journal, 18, 1253–1264.

    Article  Google Scholar 

  • De Vries, J. J., & Simmers, I. (2002). Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10, 5–17.

    Article  Google Scholar 

  • Ekwurzel, B., Schlosser, P., Smethie, W. M., Plummer, L.N., Busenberg, E., Michel, R.L., Weppernig, R., & Stute, M. (1994). Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resources Research, 30, 1693–1708.

    Google Scholar 

  • Ericksson, E., & Khunakasem, V. (1969). Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in Israel Coastal Plain. Journal of Hydrology, 7, 178–197.

    Google Scholar 

  • Flint, L. E., & Flint, A. L. (1995). Shallow infiltration processes at Yucca Mountain, Nevada—neutron logging data, 1984–1993. U.S. Geological Survey Water-Resources Investigations Report 95-4035.

    Google Scholar 

  • Flint, L. E., & Flint, A. L. (2007) Regional analysis of groundwater recharge. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds). Ground-water recharge in the arid and semiarid southwestern United States. (pp. 29–60). U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarson, G. S. (2002). Estimating recharge at Yucca Mountain Nevada, USA, comparison of methods. Hydrogeology Journal, 10, 180–204.

    Article  Google Scholar 

  • Flint, A. L., Flint, L. E., Hevesi, J. A., & Blainey, J. B. (2004). Fundamental concepts of recharge in the desert Southwest: A regional modeling perspective. In J. F. Hogan, F. M. Phillips & B. R. Scanlon (Eds.), Groundwater recharge in a desert environment: The Southwestern United States, water science and application series (Vol. 9, pp. 159–184). Washington DC: American Geophysical Union.

    Google Scholar 

  • Gee, G. W., & Hillel, D. (1988). Groundwater recharge of arid regions: Review and critique of estimation methods. Hydrological Processes, 2, 255–266.

    Article  Google Scholar 

  • Gee, G. W., Fayer, M. J., Rockhold, M. L., & Campbell, M. D. (1992). Variations in recharge at the Hanford Site. Northwest Science, 66, 237–250.

    Google Scholar 

  • Goni, I. B. (2002). Chloride method in the unsaturated zone. In W. Kinzelbach, W. Aeschbach, C. Alberich, I. B. Goni, U. Beyerle, P. Brunner, W.-H. Chiang, J. Rueedi & K. Zoellmann (Eds.), A survey of methods from groundwater recharge in arid and semiarid regions: Early warning and assessment report series UNEP/DEWA/RS.02-2 (pp. 22–31). Nairobi, Kenya: United Nations Environment Programme.

    Google Scholar 

  • Gvirtzman, H., & Gorelick, S. M. (1991). Dispersion and advection on unsaturated porous media enhanced by anion exchange. Nature, 352, 793–795.

    Article  Google Scholar 

  • Healy, R. W., & Cook, P. G. (2002). Using ground water levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.

    Article  Google Scholar 

  • Herczeg, A. L., & Leaney, F. W. (2011). Review: Environmental tracers in arid-zone hydrology. Hydrogeology Journal, 19(1), 17–30.

    Google Scholar 

  • Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Transactions American Geophysical Union, 14, 446–460.

    Google Scholar 

  • Krulikas, R. K., & Giese, G. L. (1995) Recharge to the surficial aquifer system in Lee and Hendry Counties. Florida: U.S. Geological Survey Water-Resources Investigations report 95-4003.

    Google Scholar 

  • Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography, 22(1), 140–147.

    Article  Google Scholar 

  • Lerner, D. N., Issar, A. S., & Simmers, I. (1990). Groundwater recharge, a guide to understanding and estimating natural recharge. International Associations of Hydrogeologists, Contributions to Hydrogeology (vol. 8). Kennilworth.

    Google Scholar 

  • Lerner, D. N., Issar, A. S., & Simmers, I. (1997). Groundwater recharge. In O. M. Saether & P. de Caritat (Eds.), Geochemical processes, weathering and groundwater recharge in catchments (pp. 109–150). Rotterdam: AA Balkema.

    Google Scholar 

  • Lloyd, J. W., & Farag, M. H. (1978). Fossil ground-water gradients in arid sedimentary basins. Ground Water, 16(6), 388–393.

    Article  Google Scholar 

  • Manghi, F., Mortazavi, B., Crother, C., & Hamdi, M. R. (2009). Estimating regional groundwater recharge using a hydrological budget method. Water Resources Management, 23, 2475–2489.

    Article  Google Scholar 

  • Meyboom, P. (1961). Estimating ground water recharge from stream hydrographs. Journal of Geophysical Research, 66, 1203–1214.

    Article  Google Scholar 

  • Moore, S. J. (2007). Streamflow, infiltration, and recharge in Arroyo Hondo, New Mexico. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 137–155). U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Neuman, S. P., & Witherspoon, P. A. (1972). Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resources Research, 8(5), 1284–1298.

    Article  Google Scholar 

  • Neuman, S. P. (1987). On methods of determining specific yield. Ground Water, 25, 679–684.

    Article  Google Scholar 

  • Osterkamp, W. R., Lane, L. J., & Savard, C. S. (1994). Recharge estimates using a geomorphic/distributed parameter simulation approach. Amargosa River Basin: Water Resources Bulletin, 30(3), 493–507.

    Article  Google Scholar 

  • Phillips, F. M., Mattick, J. L., Duval, T. A., Elmore, D., & Kubik, P. W. (1988). Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resources Research, 24, 1877–1891.

    Google Scholar 

  • Rorabaugh, M. I. (1964). Estimating changes in bank storage and ground water contribution to streamflow (Vol. 63, pp. 432–441). International Association of Scientific Hydrology Publication.

    Google Scholar 

  • Rutledge, A. T., & Daniel, C. C, I. I. I. (1994). Testing an automated method to estimate ground-water recharge from streamflow records. Ground Water, 32(2), 180–189.

    Article  Google Scholar 

  • Rutledge, A. T. (1993).Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from stream records. U.S. Geological Survey Water-Resources Investigations Report 93-4121.

    Google Scholar 

  • Rutledge, A. T. (1998). Computer programs for describing the recession of ground-water discharge for estimating mean groundwater-recharge and discharge from streamflow records. U.S. Geological Survey Water Resources Investigations Report 98-4148.

    Google Scholar 

  • Sanford, W. (2002). Recharge and groundwater models: An overview. Hydrogeology Journal, 10, 110–120.

    Article  Google Scholar 

  • Scanlon, B. R. (2000). Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36, 395–409.

    Article  Google Scholar 

  • Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., et al. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3379.

    Article  Google Scholar 

  • Scanlon, B. R., Tyler, S. W., & Wierenga, P. J. (1997). Hydrologic issues in arid unsaturated systems and implications for contaminant transport. Review of Geophysics, 35, 461–490.

    Article  Google Scholar 

  • Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18–39.

    Article  Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577–1593.

    Article  Google Scholar 

  • Şen, Z. (2008). Wadi hydrology. Boca Raton: CRC Press.

    Google Scholar 

  • Sibanda, T., Nonner, J. C., & Uhlenbrook, S. (2009). Comparison of groundwater recharge estimation methods for the semi-arid Nyamandblvu area, Zimbabwe. Hydrogeology Journal, 17, 1427–1441.

    Google Scholar 

  • Simmers, I. (1990). Aridity, groundwater recharge and water resources management. In D. N. Lerner, A. S. Issar & I. Simmers (Eds.), Groundwater recharge, a guide to understanding and estimating natural recharge (Contributions to Hydrogeology 8) (pp. 1–20). Kennilworth: International Associations of Hydrogeologists.

    Google Scholar 

  • Simmers, I. (1998). Groundwater recharge: An overview of estimation “problems” and recent developments, In N. S. Robins (Ed.), Groundwater pollution, aquifer recharge and vulnerability (Vol. 130, pp. 107–115) London: Geological Society (Special Publication).

    Google Scholar 

  • Sophocleous, M. (1991). Combining the soilwater balance and water-level fluctuation methods to estimate natural ground-water recharge: Practical aspects. Journal of Hydrology, 124, 229–241.

    Article  Google Scholar 

  • Sophocleous, M. (2004). Groundwater recharge. In L. Silveira, S. Wohnlich & E. J. Usunoff (Eds.), Encyclopedia of life support systems (EOLSS). Oxford: Eolss Publishers. Retrieved from http://www.eolss.net.

  • Stephens, D. B. (1996). Vadose zone hydrology. Boca Raton: CRC Press.

    Google Scholar 

  • Stonestrom, D. A., Prudic, D. E., Walvoord, M. A., Abraham, J. D., Stewart-Deaker, A. E. & Glancy, P. A., et al. (2007). Focused ground-water recharge in the Amargosa Desert Basin. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 107–136) U.S. Geological Survey Professional Paper 1703.

    Google Scholar 

  • Subyani, A. M. (2004). Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, Western Saudi Arabia. Environmental Geology, 46, 741–769.

    Google Scholar 

  • Subyani, A., & Sen, Z. (2006). Refined chloride mass-balance method and its application in Saudi Arabia. Hydrological Processes, 20, 4373–4380.

    Article  Google Scholar 

  • Sukhija, B. S. (2008). Adaptation to climate change: Strategies for sustaining groundwater resources during droughts. In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (Vol. 288, pp. 169–181). Geological Society of London Special Publication.

    Google Scholar 

  • Thompson, G. M., Hayes, J. M., & Davis, S. N. (1974). Fluorocarbon tracers in hydrology. Geophysical Research Letters, 1, 177–180.

    Article  Google Scholar 

  • Thompson, G. M., & Hayers, J. M. (1979). Trochlorofluoromethane in groundwater—as possible tracer and indicator of groundwater age. Water Resources Research, 15, 546–556.

    Article  Google Scholar 

  • Tilahun, K., & Merkel, B. J. (2009). Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeology Journal, 17, 1443–1457.

    Article  Google Scholar 

  • Weeks, E. P. (2002). The Lisse effect revisited. Ground Water, 40(6), 652–656.

    Article  Google Scholar 

  • Wood, W. W., & Sanford, W. E. (1995). Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water, 33, 458–468.

    Article  Google Scholar 

  • Wood, W. W., Rainwater, K. A., & Thompson, D. B. (1997). Quantifying macropore recharge: examples from an semi-arid area. Ground Water, 35, 1097–1106.

    Article  Google Scholar 

  • Wood, W. W. (1999). Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water, 37, 2–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliva, R., Missimer, T. (2012). Recharge Measurement in Arid and Semiarid Regions. In: Arid Lands Water Evaluation and Management. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_11

Download citation

Publish with us

Policies and ethics