Advertisement

Recharge Measurement in Arid and Semiarid Regions

  • Robert Maliva
  • Thomas Missimer
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Measuring the rate of groundwater recharge is particularly difficult in arid and semiarid lands, which are characterized by great spatial and temporal variability in recharge. Measurements of a limited number of local (point) recharge rates over a short (several years) period does not provide data representative of basin-wide rates. Most of the recharge tends to occur during rare large rainfall events and the recharge may be concentrated to certain geographic areas such as wadis or depressions that capture runoff. It is therefore highly misleading to assess and express recharge rates in terms of mean annual recharge or recharge as a proportion of the mean annual rainfall.The recharge measurement program must be capable of capturing infrequent and localized pulses of recharge. An additional consideration is that recharge rates in arid and semiarid lands are usually small relative to the resolution and errors of the measurement methods. The uncertainty introduced by errors in recharge rate measurement or calculation is an important consideration for regional groundwater flow models that are used for water management.

Keywords

Groundwater Recharge Vadose Zone Water Budget Recharge Rate Arid Land 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Al-ahmadi, M. E., & El-Fiky, A. A. (2009). Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani Western Saudi Arabia. Journal of King Saud University (Science), 21, 179–190.CrossRefGoogle Scholar
  2. Allison, G. B., Gee, G. W., & Tyler, S. W. (1994). Soil Sciences Society America Journal, 58, 6–14.CrossRefGoogle Scholar
  3. Allison, G. B. (1988). A review of some of the physical chemical and isotopic techniques available for estimating groundwater recharge. In I. Simmers (Ed.), Estimation of natural groundwater recharge (pp. 49–72). North Atlantic Treaty Organization, Scientific Affairs DivisionGoogle Scholar
  4. Al-Shaibani, A. M. (2008). Hydrogeology and hydrochemistry of a shallow alluvial aquifer. western Saudi Arabia: Hydrogeology Journal, 16, 155–165.Google Scholar
  5. Batelaan, O., & de Smedt, F. (2007). GIS-based recharge estimation by coupling surface-subsurface water balances. Journal of Hydrology, 337, 337–355.CrossRefGoogle Scholar
  6. Beyerle, U. (2002). Groundwater dating using environmental tracers and black box models. In W. Kinzelbach, W. Aeschbach, C. Alberich, I. B. Goni, U. Beyerle, P. Brunner, W.-H. Chiang, J. Rueedi & K. Zoellmann (Eds.), A survey of methods from groundwater recharge in arid and semiarid regions: Early Warning and Assessment Report Series UNEP/DEWA/RS.02-2 (pp. 32–37). United Nations Environment Programme, Nairobi, Kenya.Google Scholar
  7. Boulton, N. S. (1963). Analysis of data from non-equilibrium pumping tests allowing for delayed yield from storage. Institute of Civil Engineers Proceedings (London), 26, 469–482.CrossRefGoogle Scholar
  8. Bourdon, D. J. (1977). Flow of fossil groundwater. Quarterly Journal of Engineering Geology and Hydrogeology, 10, 97–124.CrossRefGoogle Scholar
  9. Busenberg, E., & Plummer, L. N. (1992). Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: The alluvium and terrace system of Central Oklahoma. Water Resources Research, 28, 2257–2283.CrossRefGoogle Scholar
  10. Chung, H.-M., Kim, N.-W., Lee, J., & Sophocleous, M. (2010). Assessing distributed groundwater recharge using integrated surface water-groundwater modeling. Hydrogeology Journal, 18, 1253–1264.CrossRefGoogle Scholar
  11. De Vries, J. J., & Simmers, I. (2002). Groundwater recharge: An overview of processes and challenges. Hydrogeology Journal, 10, 5–17.CrossRefGoogle Scholar
  12. Ekwurzel, B., Schlosser, P., Smethie, W. M., Plummer, L.N., Busenberg, E., Michel, R.L., Weppernig, R., & Stute, M. (1994). Dating of shallow groundwater: Comparison of the transient tracers 3H/3He, chlorofluorocarbons, and 85Kr. Water Resources Research, 30, 1693–1708.Google Scholar
  13. Ericksson, E., & Khunakasem, V. (1969). Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in Israel Coastal Plain. Journal of Hydrology, 7, 178–197.Google Scholar
  14. Flint, L. E., & Flint, A. L. (1995). Shallow infiltration processes at Yucca Mountain, Nevada—neutron logging data, 1984–1993. U.S. Geological Survey Water-Resources Investigations Report 95-4035.Google Scholar
  15. Flint, L. E., & Flint, A. L. (2007) Regional analysis of groundwater recharge. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds). Ground-water recharge in the arid and semiarid southwestern United States. (pp. 29–60). U.S. Geological Survey Professional Paper 1703.Google Scholar
  16. Flint, A. L., Flint, L. E., Kwicklis, E. M., Fabryka-Martin, J. T., & Bodvarson, G. S. (2002). Estimating recharge at Yucca Mountain Nevada, USA, comparison of methods. Hydrogeology Journal, 10, 180–204.CrossRefGoogle Scholar
  17. Flint, A. L., Flint, L. E., Hevesi, J. A., & Blainey, J. B. (2004). Fundamental concepts of recharge in the desert Southwest: A regional modeling perspective. In J. F. Hogan, F. M. Phillips & B. R. Scanlon (Eds.), Groundwater recharge in a desert environment: The Southwestern United States, water science and application series (Vol. 9, pp. 159–184). Washington DC: American Geophysical Union.Google Scholar
  18. Gee, G. W., & Hillel, D. (1988). Groundwater recharge of arid regions: Review and critique of estimation methods. Hydrological Processes, 2, 255–266.CrossRefGoogle Scholar
  19. Gee, G. W., Fayer, M. J., Rockhold, M. L., & Campbell, M. D. (1992). Variations in recharge at the Hanford Site. Northwest Science, 66, 237–250.Google Scholar
  20. Goni, I. B. (2002). Chloride method in the unsaturated zone. In W. Kinzelbach, W. Aeschbach, C. Alberich, I. B. Goni, U. Beyerle, P. Brunner, W.-H. Chiang, J. Rueedi & K. Zoellmann (Eds.), A survey of methods from groundwater recharge in arid and semiarid regions: Early warning and assessment report series UNEP/DEWA/RS.02-2 (pp. 22–31). Nairobi, Kenya: United Nations Environment Programme.Google Scholar
  21. Gvirtzman, H., & Gorelick, S. M. (1991). Dispersion and advection on unsaturated porous media enhanced by anion exchange. Nature, 352, 793–795.CrossRefGoogle Scholar
  22. Healy, R. W., & Cook, P. G. (2002). Using ground water levels to estimate recharge. Hydrogeology Journal, 10(1), 91–109.CrossRefGoogle Scholar
  23. Herczeg, A. L., & Leaney, F. W. (2011). Review: Environmental tracers in arid-zone hydrology. Hydrogeology Journal, 19(1), 17–30.Google Scholar
  24. Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Transactions American Geophysical Union, 14, 446–460.Google Scholar
  25. Krulikas, R. K., & Giese, G. L. (1995) Recharge to the surficial aquifer system in Lee and Hendry Counties. Florida: U.S. Geological Survey Water-Resources Investigations report 95-4003.Google Scholar
  26. Lee, D. R. (1977). A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography, 22(1), 140–147.CrossRefGoogle Scholar
  27. Lerner, D. N., Issar, A. S., & Simmers, I. (1990). Groundwater recharge, a guide to understanding and estimating natural recharge. International Associations of Hydrogeologists, Contributions to Hydrogeology (vol. 8). Kennilworth.Google Scholar
  28. Lerner, D. N., Issar, A. S., & Simmers, I. (1997). Groundwater recharge. In O. M. Saether & P. de Caritat (Eds.), Geochemical processes, weathering and groundwater recharge in catchments (pp. 109–150). Rotterdam: AA Balkema.Google Scholar
  29. Lloyd, J. W., & Farag, M. H. (1978). Fossil ground-water gradients in arid sedimentary basins. Ground Water, 16(6), 388–393.CrossRefGoogle Scholar
  30. Manghi, F., Mortazavi, B., Crother, C., & Hamdi, M. R. (2009). Estimating regional groundwater recharge using a hydrological budget method. Water Resources Management, 23, 2475–2489.CrossRefGoogle Scholar
  31. Meyboom, P. (1961). Estimating ground water recharge from stream hydrographs. Journal of Geophysical Research, 66, 1203–1214.CrossRefGoogle Scholar
  32. Moore, S. J. (2007). Streamflow, infiltration, and recharge in Arroyo Hondo, New Mexico. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 137–155). U.S. Geological Survey Professional Paper 1703.Google Scholar
  33. Neuman, S. P., & Witherspoon, P. A. (1972). Field determination of the hydraulic properties of leaky multiple aquifer systems. Water Resources Research, 8(5), 1284–1298.CrossRefGoogle Scholar
  34. Neuman, S. P. (1987). On methods of determining specific yield. Ground Water, 25, 679–684.CrossRefGoogle Scholar
  35. Osterkamp, W. R., Lane, L. J., & Savard, C. S. (1994). Recharge estimates using a geomorphic/distributed parameter simulation approach. Amargosa River Basin: Water Resources Bulletin, 30(3), 493–507.CrossRefGoogle Scholar
  36. Phillips, F. M., Mattick, J. L., Duval, T. A., Elmore, D., & Kubik, P. W. (1988). Chlorine 36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resources Research, 24, 1877–1891.Google Scholar
  37. Rorabaugh, M. I. (1964). Estimating changes in bank storage and ground water contribution to streamflow (Vol. 63, pp. 432–441). International Association of Scientific Hydrology Publication.Google Scholar
  38. Rutledge, A. T., & Daniel, C. C, I. I. I. (1994). Testing an automated method to estimate ground-water recharge from streamflow records. Ground Water, 32(2), 180–189.CrossRefGoogle Scholar
  39. Rutledge, A. T. (1993).Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from stream records. U.S. Geological Survey Water-Resources Investigations Report 93-4121.Google Scholar
  40. Rutledge, A. T. (1998). Computer programs for describing the recession of ground-water discharge for estimating mean groundwater-recharge and discharge from streamflow records. U.S. Geological Survey Water Resources Investigations Report 98-4148.Google Scholar
  41. Sanford, W. (2002). Recharge and groundwater models: An overview. Hydrogeology Journal, 10, 110–120.CrossRefGoogle Scholar
  42. Scanlon, B. R. (2000). Uncertainties in estimating water fluxes and residence times using environmental tracers in an arid unsaturated zone. Water Resources Research, 36, 395–409.CrossRefGoogle Scholar
  43. Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., et al. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20, 3335–3379.CrossRefGoogle Scholar
  44. Scanlon, B. R., Tyler, S. W., & Wierenga, P. J. (1997). Hydrologic issues in arid unsaturated systems and implications for contaminant transport. Review of Geophysics, 35, 461–490.CrossRefGoogle Scholar
  45. Scanlon, B. R., Healy, R. W., & Cook, P. G. (2002). Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10, 18–39.CrossRefGoogle Scholar
  46. Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11, 1577–1593.CrossRefGoogle Scholar
  47. Şen, Z. (2008). Wadi hydrology. Boca Raton: CRC Press.Google Scholar
  48. Sibanda, T., Nonner, J. C., & Uhlenbrook, S. (2009). Comparison of groundwater recharge estimation methods for the semi-arid Nyamandblvu area, Zimbabwe. Hydrogeology Journal, 17, 1427–1441.Google Scholar
  49. Simmers, I. (1990). Aridity, groundwater recharge and water resources management. In D. N. Lerner, A. S. Issar & I. Simmers (Eds.), Groundwater recharge, a guide to understanding and estimating natural recharge (Contributions to Hydrogeology 8) (pp. 1–20). Kennilworth: International Associations of Hydrogeologists.Google Scholar
  50. Simmers, I. (1998). Groundwater recharge: An overview of estimation “problems” and recent developments, In N. S. Robins (Ed.), Groundwater pollution, aquifer recharge and vulnerability (Vol. 130, pp. 107–115) London: Geological Society (Special Publication).Google Scholar
  51. Sophocleous, M. (1991). Combining the soilwater balance and water-level fluctuation methods to estimate natural ground-water recharge: Practical aspects. Journal of Hydrology, 124, 229–241.CrossRefGoogle Scholar
  52. Sophocleous, M. (2004). Groundwater recharge. In L. Silveira, S. Wohnlich & E. J. Usunoff (Eds.), Encyclopedia of life support systems (EOLSS). Oxford: Eolss Publishers. Retrieved from http://www.eolss.net.
  53. Stephens, D. B. (1996). Vadose zone hydrology. Boca Raton: CRC Press.Google Scholar
  54. Stonestrom, D. A., Prudic, D. E., Walvoord, M. A., Abraham, J. D., Stewart-Deaker, A. E. & Glancy, P. A., et al. (2007). Focused ground-water recharge in the Amargosa Desert Basin. In D. A. Stonestrom, J. Constantz, T. P. A. Ferré & S. A. Leake (Eds.), Ground-water recharge in the arid and semiarid southwestern United States (pp. 107–136) U.S. Geological Survey Professional Paper 1703.Google Scholar
  55. Subyani, A. M. (2004). Use of chloride-mass balance and environmental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, Western Saudi Arabia. Environmental Geology, 46, 741–769.Google Scholar
  56. Subyani, A., & Sen, Z. (2006). Refined chloride mass-balance method and its application in Saudi Arabia. Hydrological Processes, 20, 4373–4380.CrossRefGoogle Scholar
  57. Sukhija, B. S. (2008). Adaptation to climate change: Strategies for sustaining groundwater resources during droughts. In W. Dragoni & B. S. Sukhija (Eds.), Climate change and groundwater (Vol. 288, pp. 169–181). Geological Society of London Special Publication.Google Scholar
  58. Thompson, G. M., Hayes, J. M., & Davis, S. N. (1974). Fluorocarbon tracers in hydrology. Geophysical Research Letters, 1, 177–180.CrossRefGoogle Scholar
  59. Thompson, G. M., & Hayers, J. M. (1979). Trochlorofluoromethane in groundwater—as possible tracer and indicator of groundwater age. Water Resources Research, 15, 546–556.CrossRefGoogle Scholar
  60. Tilahun, K., & Merkel, B. J. (2009). Estimation of groundwater recharge using a GIS-based distributed water balance model in Dire Dawa, Ethiopia. Hydrogeology Journal, 17, 1443–1457.CrossRefGoogle Scholar
  61. Weeks, E. P. (2002). The Lisse effect revisited. Ground Water, 40(6), 652–656.CrossRefGoogle Scholar
  62. Wood, W. W., & Sanford, W. E. (1995). Chemical and isotopic methods for quantifying ground-water recharge in a regional, semiarid environment. Ground Water, 33, 458–468.CrossRefGoogle Scholar
  63. Wood, W. W., Rainwater, K. A., & Thompson, D. B. (1997). Quantifying macropore recharge: examples from an semi-arid area. Ground Water, 35, 1097–1106.CrossRefGoogle Scholar
  64. Wood, W. W. (1999). Use and misuse of the chloride-mass balance method in estimating ground water recharge. Ground Water, 37, 2–3.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert Maliva
    • 1
  • Thomas Missimer
    • 2
  1. 1.Schlumberger Water ServicesFort MyersUSA
  2. 2. Water Desalination and Reuse CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations