Skip to main content

Water Resources Assessment Methods: Assessment of Groundwater Resources

  • Chapter
  • First Online:
Arid Lands Water Evaluation and Management

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 3457 Accesses

Abstract

The fundamental challenge for managing groundwater resources in arid and semiarid lands is evaluating the response of aquifers to future short-term and long-term abstractions. This technical knowledge is then used as the basis for water-policy and management decisions. For example, groundwater pumping may be restricted to quantities that are considered sustainable, recognizing that sustainable or safe yields are, in practice, values that are difficult to quantify. Information is, therefore, needed on the impacts of various pumping rates and well distributions on aquifer water budgets, surface water resources, and sensitive environments. In the case of non-renewable groundwater resources, a strategy of planned depletion may be employed, in which case information is needed on the likely rate of future declines in aquifer water levels under different pumping scenarios and on various water resource replacement strategies (e.g., managed aquifer recharge) that may be required to meet future human and natural system requirements. Numerical groundwater modeling is a standard tool for making groundwater resource assessments and projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, M. G. (Ed.). (2005). Encyclopedia of hydrological sciences. Chichester. UK: Wiley.

    Google Scholar 

  • Andraski, B. J. (1997). Soil-water movement under natural-site and waste-site conditions. A multiple-year field study in the Mojave Desert, Nevada, Water Resources Research, 33, 1901–1916.

    Google Scholar 

  • Andraski, B. J., & Scanlon, B. R. (2002). Thermocouple psychrometry. In J. H. Dane, & G. C. Topp (Eds.), Methods of soil analyses, Part 4, Physical Methods (pp. 609–648). Madison, WI: Soil Science Society of America.

    Google Scholar 

  • ASTM. (2009). D3385–09 Standard test method for infiltration rate in soils in field using double-ring infiltrometer: West Conshohocken. Pennsylvania: ASTM International.

    Google Scholar 

  • Bouwer, H. (1986). Intake rate: Cylindrical infiltrometer. In A. Klute (Ed.) Methods of soil analysis, Part 1: Physical and mineralogical methods (pp. 825–844). Madison, WI: American Society of Agronomy and Soil Science Society of America, Agronomy Monograph No. 9.

    Google Scholar 

  • Campbell, G. S. (1988). Soil water potential measurement and overview. Irrigation Science, 9. 265–273.

    Google Scholar 

  • Cobbing, J. E., & Davies, J. (2011). Improving access to southern Africa’s groundwater “grey data”: Hydrogeology Journal 19(6). 1117–1120.

    Google Scholar 

  • Dane, J. H., & Topp, G. C. (Eds.). (2002). Methods of soil analyses, Part 4. Madison, WL: Soil Science Society of America: Physical Methods.

    Google Scholar 

  • Dawson, K. J., & Isotak, J. D. (1991). Aquifer testing: Design and analysis of pumping and slug tests. Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Douglass, J. E. (1966). Volumetric calibration of neutron moisture probe Soil Science Society of America Proceedings 30, 541–544.

    Google Scholar 

  • Driscoll, F. G. (1986). Groundwater and Wells (2nd ed.). St. Paul, MN: Johnson Filtration Systems.

    Google Scholar 

  • Durner, W., & Or, D. (2005). Soil water potential measurement. In M. G. Anderson (Ed.) Encyclopedia of hydrological sciences. Chichester: Wiley.

    Google Scholar 

  • Ferre, T. P .A., and Topp, G. C. (2002). Water content, In Dane, J. H., & Topp, G. C. (Eds.), Methods of soil analysis. Part 4. Madison, WI: Soil Science Society of America, pp. 434–446.

    Google Scholar 

  • Flint, L. E., & Flint, A. L. (1995). Shallow infiltration processes at Yucca Mountain, Nevada—neutron logging data, 1984–1993: U.S. Geological Survey Water-Resources Investigations Report 95-4035, 46 p.

    Google Scholar 

  • Gardner, W., & Kirkham, D. (1952). Determination of soil moisture by neutron scattering. Soil Science, 73, 391–402.

    Google Scholar 

  • Graeff, T., Zehe, E., Schlaeger, S., Morgner, M., Bauer, A., & Becker, R., et al. (2010). Hydrology and Earth System Sciences Discussions, 7, 269–311.

    Google Scholar 

  • Gregory, P. J., Poss, R., & Micin, S. (1995). Use of time‐domain reflectometry (TDR) to measure the water‐content of sandy soils. Australian Journal of Soil Research, 33(2), 265–275.

    Google Scholar 

  • Gregory, J. H., Dukes, M. D., Miller, G. L., & Jones, P. H. (2005). Analysis of double-ring infiltration techniques and development of a simple automatic water delivery system: Applied Turfgrass. Science, doi:10.1094/ATS-2005-0531-01-MG.

  • Hillel, D. (1998). Environmental soil physics, San Diego, California: Academic Press.

    Google Scholar 

  • Jadoon, K. Z., Slob, E. C., Vanclooster, M., Vereecken, H., & Lambot, S. (2008). Uniqueness and stability analysis of hydrophysical inversion for time-lapse ground-penetrating radar estimates of shallow soil hydraulic properties. Water Resources Research, 44 p. W09 421, doi:10.1029/2007WR006639

  • Jadoon, K. Z., Lambot, S., Scharnagl, B., van der Klug, Slob, E., & Vereechen, H. (2010). Quantifying field scale soil hydrogeophysical properties using full-waveform inversion of proximal zero-offset ground-penetrating radar: Near Surface. Geophysics, 8(6), 483–491.

    Google Scholar 

  • Jadoon, K. Z., Slob, E., Vereecken, H., & Lambot, S. (2011). Analysis of antenna transfer functions and phase center position for modeling off-ground GPR: In IEEE Transactions on Geosciences and Remote Sensing, 48(5), 1949–1662.

    Google Scholar 

  • Jonard, F., Weihermuller, L., Jadoon, K. Z., Schwank, M., Vereecken, H., & Lambot, S. (2011) Mapping field-scale soil moisture with L-band radiometer and off-ground GPR over a bare soil. IEEE Transactions on Geosciences and Remote Sensing, 49, 2863–2875.

    Google Scholar 

  • Kasenow, M. (1997). Applied ground-water hydrology and well hydraulics, Highlands Ranch. Colorado: Water Resources Publications.

    Google Scholar 

  • Kasenow, M. (2006). Aquifer test data: evaluation and analysis, Highlands Ranch. Colorado: Water Resources Publications.

    Google Scholar 

  • Kramer, J. H., Cullen, S.J ., & Everett, L.G. (1992). Vadose zone monitoring with neutron moisture probe: Ground Water Monitoring and Remediation, 12(3), 177–187.

    Google Scholar 

  • Kruseman, G. P. & de Ridder, N. A. (1991). Analysis and evaluation of pumping test data: International Institute for Land Reclamation and Improvement. Wageningen, The Netherlands, Publication 47.

    Google Scholar 

  • Lambot, S., Rhebergen, J., Slob, E., Lopera, O., Jadoon, K. Z., & Vereecken, H. (2009). Remote estimation of the hydraulic properties of a sandy soil using full-waveform integrated hydrogeophysical inversion of time-lapse, off-ground GPR data: Vadose Zone Journal, 8(3), 743–754.

    Google Scholar 

  • Laurent, J.-P., Ruelle, P., Delage, L., Zairi, A., Nouna, B. B., & Adjmi, T. (2005). Monitoring soil water content profiles with a commercial TDR system. Comparison field tests and laboratory calibration, Vadose Zone Journal, 4, 1030–1036.

    Google Scholar 

  • Ledieu, J., De Ridder, P., De Clerck, P., & Dautrebande, S. (1986). A method of measuring soil moisture by time-domain reflectometry. Journal of Hydrology, 88, 319–328.

    Google Scholar 

  • Lohman, S. W. (1979). Ground-water hydraulics. U.S. Geological Survey Professional Paper 708.

    Google Scholar 

  • Maliva, R. G., & Missimer, T. M., (2010). Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design, and operation: Houston, Schlumberger Water Services.Methods in Water Resources Evaluation Series No. 2.

    Google Scholar 

  • Misstear, B., Banks, D., & Clark, L. (2006). Water Wells and Boreholes. Chichester, UK: Wiley.

    Google Scholar 

  • Plauborg, F. (1995). Evaporation from bare soil in a temperate humid climate-measurement using micro-lysimeters and time domain reflectometry. Agricultural and Forest Meteorology, 76(1), 1–17.

    Google Scholar 

  • Robinson, D. A., Jones, S. B., Wraith, J. M., Or, D., & Friedman, S. P. (2003). A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone Journal, 2, 444–475.

    Google Scholar 

  • Roscoe Moss Company. (1990). Handbook of ground water development, New York: Wiley.

    Google Scholar 

  • Smajstria, A. G., Harrision, D. S. (1998). Tensiometers for soil moisture measurement and irrigation scheduling: University of Florida IFAS Extension Publication #CIR487.

    Google Scholar 

  • Stallman, R. W. (1969). Aquifer testing design, observation, and data analysis, U. S. Geological Survey Techniques of Water Resources Investigations, Chapter B1, book 3.

    Google Scholar 

  • Sterrett, R. J. (2007). Groundwater and wells (3rd ed.). St. Paul, MN: Johnson Screens.

    Google Scholar 

  • Stone, J. F., Kirkham, D., & Read, A. A. (1955). Soil moisture determination by a portable neutron scattering moisture meter. Soil Science Society of America Journal, 19, 419–423.

    Google Scholar 

  • Swanson, R., (1981). Sample examination manual, AAPG Methods in Exploration 1.

    Google Scholar 

  • Timlin, D., Fleisher, D., Kim, S.-H., Reddy, V., & Baker, J. (2007). Evaporation measurement in controlled environment chambers. A comparison between time domain reflectometry and accumulation of condensate from cooling coils: Agronomy Journal, 99, 166–173.

    Google Scholar 

  • Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16, 574–582.

    Google Scholar 

  • Walton, W. C. (1991). Principles of groundwater engineering. New York: CRC Press.

    Google Scholar 

  • Walton, W. C. (1997). Practical aspects of ground water modeling (3rd ed.), Westerville, OH: National Ground Water Association.

    Google Scholar 

  • Walton, W. C. (2006). Aquifer test modeling, Boca Raton, FL: CRC Press.

    Google Scholar 

  • Walton, W.C. (2008). Upgrading aquifer test analysis: Ground water, v. 46, p. 660‐662.

    Google Scholar 

  • Weight, W. D. (2008). Hydrogeology field manual, (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • World Nuclear Association. (2011). Nuclear desalination: www.world-nuclear.org/info/in71.html.

  • Wu, L., Pan, L., Roberson, M.J., & Shouse, P. J. (1997). Numerical evaluations of ring-infiltrometers under various soil conditions: Soil Science, 162(11). 771–777.

    Google Scholar 

  • Yeh, T.-C., & Lee, C. H. (2007). Time to change the way we collect and analyze data for aquifer characterization. Ground Water, 45, 116–118.

    Google Scholar 

  • Ziemer, R. R., Goldberg, I., & MacGillivray, N. A. (1967). Measuring moisture near surface—minor difference due to neutron source type. Berkley, CA: U.S. Department of Agriculture Forest Service, Pacific Southwest Forest and Range Experiment Station, Research Note PSW-158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maliva, R., Missimer, T. (2012). Water Resources Assessment Methods: Assessment of Groundwater Resources. In: Arid Lands Water Evaluation and Management. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29104-3_10

Download citation

Publish with us

Policies and ethics