Skip to main content

Secure Distributed Computation of the Square Root and Applications

  • Conference paper
Information Security Practice and Experience (ISPEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7232))

Abstract

The square root is an important mathematical primitive whose secure, efficient, distributed computation has so far not been possible. We present a solution to this problem based on Goldschmidt’s algorithm. The starting point is computed by linear approximation of the normalized input using carefully chosen coefficients. The whole algorithm is presented in the fixed-point arithmetic framework of Catrina/Saxena for secure computation. Experimental results demonstrate the feasibility of our algorithm and we show applicability by using our protocol as a building block for a secure QR-Decomposition of a rational-valued matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 503–513. ACM, New York (1990)

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10. ACM, New York (1988)

    Chapter  Google Scholar 

  3. Catrina, O., de Hoogh, S.: Improved Primitives for Secure Multiparty Integer Computation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Catrina, O., de Hoogh, S.: Secure Multiparty Linear Programming Using Fixed-Point Arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Catrina, O., Saxena, A.: Secure Computation with Fixed-Point Numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 11–19. ACM, New York (1988)

    Chapter  Google Scholar 

  7. Cramer, R., Damgård, I.: Secure Distributed Linear Algebra in a Constant Number of Rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Cramer, R., Damgård, I., Ishai, Y.: Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987, pp. 218–229. ACM, New York (1987)

    Chapter  Google Scholar 

  10. Goldschmidt, R.E.: Applications of division by convergence. Master’s thesis, M.I.T. (1964)

    Google Scholar 

  11. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press (1996)

    Google Scholar 

  12. Ito, M., Takagi, N., Yajima, S.: Efficient initial approximation for multiplicative division and square root by a multiplication with operand modification. IEEE Transactions on Computers 46, 495–498 (1997)

    Article  MathSciNet  Google Scholar 

  13. Markstein, P.: Software division and square root using goldschmidt’s algorithms. In: 6th Conference on Real Numbers and Computers, pp. 146–157 (2004)

    Google Scholar 

  14. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stoer, J., Bulirsch, R.: Introduction to numerical analysis. Texts in applied mathematics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  16. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, SFCS 1982, pp. 160–164. IEEE Computer Society, Washington, DC, USA (1982)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liedel, M. (2012). Secure Distributed Computation of the Square Root and Applications. In: Ryan, M.D., Smyth, B., Wang, G. (eds) Information Security Practice and Experience. ISPEC 2012. Lecture Notes in Computer Science, vol 7232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29101-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29101-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29100-5

  • Online ISBN: 978-3-642-29101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics