Three Orderings on Repertoires

  • Günther Palm


The set of all repertoires actually has an interesting structure, when we “look at” a repertoire α in terms of its proper descriptions D(α). This means that we should consider two repertoires to be essentially the same if they have the same proper descriptions, or we should say that α is more refined than β if the proper descriptions in α are contained in those in β.


Equivalence Class Equivalence Relation Maximal Element Proper Choice Topological Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    Adler, R. L., Konheim, A. G., & McAndrew, M. H. (1965). Topological entropy. Transactions of the American Mathematical Society, 114, 309–319.Google Scholar
  2. .
    Goodman, T. N. T. (1971). Relating topological entropy and measure entropy. Bulletin of the London Mathematical Society, 3, 176–180.Google Scholar
  3. .
    Goodwyn, L. W. (1969). Topological entropy bounds measure-theoretic entropy. Proceedings of the American Mathematical Society, 23, 679–688.Google Scholar
  4. .
    Hopf, E. (1937). Ergodentheorie. Berlin: Springer. Reprinted by Chelsea Publishing Co., New York edition.Google Scholar
  5. .
    Keynes, H. B., & Robertson, J. (1969). Generators for topological entropy and expansivness. Mathematical Systems Theory, 3, 51–59.Google Scholar
  6. .
    Krieger, W. (1970). On entropy and generators of measure-preserving transformations. Transactions of the American Mathematical Society, 149, 453–464.Google Scholar
  7. .
    Palm, G. (1976a). A common generalization of topological and measure-theoretic entropy. Astérisque, 40, 159–165.Google Scholar
  8. .
    Palm, G. (1976b). Entropie und Erzeuer in dynamischen Verbänden. Z. Wahrscheinlichkeitstheorie verw. Geb., 36, 27–45.Google Scholar
  9. .
    Walters, P. (1982). An introduction to ergodic theory. Berlin, Heidelberg, New York: Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Günther Palm
    • 1
  1. 1.Neural Information ProcessingUniversity of UlmUlmGermany

Personalised recommendations