A GPU-Based Multi-swarm PSO Method for Parameter Estimation in Stochastic Biological Systems Exploiting Discrete-Time Target Series

  • Marco S. Nobile
  • Daniela Besozzi
  • Paolo Cazzaniga
  • Giancarlo Mauri
  • Dario Pescini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7246)


Parameter estimation (PE) of biological systems is one of the most challenging problems in Systems Biology. Here we present a PE method that integrates particle swarm optimization (PSO) to estimate the value of kinetic constants, and a stochastic simulation algorithm to reconstruct the dynamics of the system. The fitness of candidate solutions, corresponding to vectors of reaction constants, is defined as the point-to-point distance between a simulated dynamics and a set of experimental measures, carried out using discrete-time sampling and various initial conditions. A multi-swarm PSO topology with different modalities of particles migration is used to account for the different laboratory conditions in which the experimental data are usually sampled. The whole method has been specifically designed and entirely executed on the GPU to provide a reduction of computational costs. We show the effectiveness of our method and discuss its performances on an enzymatic kinetics and a prokaryotic gene expression network.


Particle Swarm Optimization Good Particle Single Instruction Multiple Data Stochastic Simulation Algorithm Parallel Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besozzi, D., Cazzaniga, P., Mauri, G., Pescini, D., Vanneschi, L.: A comparison of Genetic Algorithms and Particle Swarm Optimization for parameter estimation in stochastic biochemical systems. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 116–127. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Cao, Y., Gillespie, D.T., Petzold, L.: Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 44109 (2006)CrossRefGoogle Scholar
  3. 3.
    Chou, I.C., Voit, E.O.: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosci. 219, 57–83 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Durstenfeld, R.: Algorithm 235: Random permutation. Commun. ACM 7, 420 (1964)CrossRefGoogle Scholar
  5. 5.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Comp. Phys. 81, 2340–2361 (1977)Google Scholar
  6. 6.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley (1989)Google Scholar
  7. 7.
    Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer for dynamic optimization problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 513–524. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of the IEEE International Conference on Neural Networks, Piscataway, NJ, vol. IV, pp. 1942–1948 (1995)Google Scholar
  9. 9.
    Lin, S.C., Punch III, W.F., Goodman, E.D.: Coarse-grain parallel genetic algorithms: Categorization and new approach. In: Proc. of Sixth IEEE Symposium on Parallel and Distributed Processing, pp. 28–37. IEEE Computer Society Press (1994)Google Scholar
  10. 10.
    Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)CrossRefGoogle Scholar
  11. 11.
    Romero, J., Cotta, C.: Optimization by island-structured decentralized particle swarms. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications. AISC, vol. 33, pp. 25–33. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Tanese, R.: Distributed genetic algorithms. In: Proc. of Third Int. Conference on Genetic Algorithms, pp. 434–439. Morgan Kaufmann Publishers, San Francisco (1989)Google Scholar
  13. 13.
    Wang, Y., Christley, S., Mjolsness, E., Xie, X.: Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent. BMC Syst. Biol. 4(1), 99 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marco S. Nobile
    • 1
  • Daniela Besozzi
    • 2
  • Paolo Cazzaniga
    • 3
  • Giancarlo Mauri
    • 1
  • Dario Pescini
    • 4
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Dipartimento di Informatica e ComunicazioneUniversità degli Studi di MilanoMilanoItaly
  3. 3.Dipartimento di Scienze della PersonaUniversità degli Studi di BergamoBergamoItaly
  4. 4.Dipartimento di StatisticaUniversità degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations