Optimizing the Edge Weights in Optimal Assignment Methods for Virtual Screening with Particle Swarm Optimization

  • Lars Rosenbaum
  • Andreas Jahn
  • Andreas Zell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7246)

Abstract

Ligand-based virtual screening experiments are an important task in the early drug discovery stage. In such an experiment, a chemical database is searched for molecules with similar properties to a given query molecule. The optimal assignment approach for chemical graphs has proven to be a successful method for various cheminformatic tasks, such as virtual screening. The optimal assignment approach assumes all atoms of a query molecule to have the same importance. This assumption is not realistic in a virtual screening for ligands against a specific protein target. In this study, we propose an extension of the optimal assignment approach that allows for assigning different importance to the atoms of a query molecule by weighting the edges of the optimal assignment. Then, we show that particle swarm optimization is able to optimize these edge weights for optimal virtual screening performance. We compared the optimal assignment with optimized edge weights to the original version with equal weights on various benchmark data sets using sophisticated virtual screening performance metrics. The results show that the optimal assignment with optimized edge weights achieved a considerably better performance. Thus, the proposed extension in combination with particle swarm optimization is a valuable approach for ligand-based virtual screening experiments.

Keywords

Particle Swarm Optimization Enrichment Factor Virtual Screening Edge Weight Optimal Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajorath, J.: Integration of virtual and high-throughput screening. Nat. Rev. Drug Discov. 1(11), 882–894 (2002)CrossRefGoogle Scholar
  2. 2.
    Bender, A., Jenkins, J.L., Scheiber, J., Sukuru, S.C., Glick, M., Davies, J.W.: How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space. Chem. Inf. Model. 49(1), 108–119 (2009)CrossRefGoogle Scholar
  3. 3.
    Bender, A., Mussa, H.Y., Glen, R.C., Reiling, S.: Molecular similarity searching using atom environments, information-based feature selection, and a nave bayesian classifier. Chem. Inf. Comput. Sci. 44(1), 170–178 (2004)CrossRefGoogle Scholar
  4. 4.
    Cheeseright, T.J., Mackey, M.D., Melville, J.L., Vinter, J.G.: FieldScreen: Virtual Screening Using Molecular Fields. Application to the DUD Data Set. Chem. Inf. Model. 48(11), 2108–2117 (2008)CrossRefGoogle Scholar
  5. 5.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE T Evolut. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  6. 6.
    Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Optimal assignment kernels for attributed molecular graphs. In: ICML 2005: Proceedings of the 22nd International Conference on Machine Learning, pp. 225–232. ACM, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Fröhlich, H., Wegner, J.K., Sieker, F., Zell, A.: Kernel Functions for Attributed Molecular Graphs - A New Similarity-Based Approach to ADME Prediction in Classification and Regression. QSAR Comb. Sci. 25(4), 317–326 (2006)CrossRefGoogle Scholar
  8. 8.
    Geis, M., Middendorf, M.: A Particle Swarm Optimizer for Finding Minimum Free Energy RNA Secondary Structures. In: Proc. IEEE Swarm Intelligence Symp., SIS 2007, pp. 1–8 (2007)Google Scholar
  9. 9.
    Geppert, H., Vogt, M., Bajorath, J.: Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation. Chem. Inf. Model. 50(2), 205–216 (2010)CrossRefGoogle Scholar
  10. 10.
    Good, A.C., Hermsmeier, M.A., Hindle, S.: Measuring CAMD Technique Performance: A Virtual Screening Case Study in the Design of Validation Experiments. Comput.-Aided Mol. Des. 18(7), 529–536 (2004)CrossRefGoogle Scholar
  11. 11.
    Guha, R., Howard, M.T., Hutchison, G.R., Murray-Rust, P., Rzepa, H., Steinbeck, C., Wegner, J., Willighagen, E.L.: The Blue Obelisk Interoperability in Chemical Informatics. Chem. Inf. Model. 46(3), 991–998 (2006)CrossRefGoogle Scholar
  12. 12.
    Huang, N., Shoichet, B.K., Irwin, J.J.: Benchmarking Sets for Molecular Docking. Med. Chem. 49(23), 6789–6801 (2006)CrossRefGoogle Scholar
  13. 13.
    Jahn, A., Hinselmann, G., Fechner, N., Zell, A.: Optimal assignment methods for ligand-based virtual screening. Cheminf. 1, 14 (2009)CrossRefGoogle Scholar
  14. 14.
    Jahn, A., Rosenbaum, L., Hinselmann, G., Zell, A.: 4d flexible atom-pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening. Cheminform. 3(1), 23 (2011)CrossRefGoogle Scholar
  15. 15.
    Jain, A.N., Nicholls, A.: Recommendations for Evaluation of Computational Methods. Comput.-Aided Mol. Des. 22(3-4), 133–139 (2008)CrossRefGoogle Scholar
  16. 16.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Computer Society, Perth (1995)CrossRefGoogle Scholar
  17. 17.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proc. Congress Evolutionary Computation CEC 2002, vol. 2, pp. 1671–1676 (2002)Google Scholar
  18. 18.
    Kirchmair, J., Markt, P., Distinto, S., Wolber, G., Langer, T.: Evaluation of the Performance of 3D Virtual Screening Protocols: RMSD Comparisons, Enrichment Assessments, and Decoy Selection - What can We Learn from Earlier Mistakes? Comput.-Aided Mol. Des. 22(3-4), 213–228 (2008)CrossRefGoogle Scholar
  19. 19.
    von Korff, M., Freyss, J., Sander, T.: Flexophore, a New Versatile 3D Pharmacophore Descriptor That Considers Molecular Flexibility. Chem. Inf. Model. 48(4), 797–810 (2008)CrossRefGoogle Scholar
  20. 20.
    Kronfeld, M., Planatscher, H., Zell, A.: The EvA2 Optimization Framework. In: Blum, C., Battiti, R. (eds.) LION IV. LNCS, vol. 6073, pp. 247–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. 2, 83–97 (1955)CrossRefGoogle Scholar
  22. 22.
    Rosenbaum, L., Hinselmann, G., Jahn, A., Zell, A.: Interpreting linear support vector machine models with heat map atom and bond coloring. Cheminf. 3(11) (2011)Google Scholar
  23. 23.
    Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Tech. Rep. TR-95-012, ICSI (1995)Google Scholar
  24. 24.
    Truchon, J.F., Bayly, C.I.: Evaluating Virtual Screening Methods: Good and Bad Metrics for the ”Early Recognition” Problem. Chem. Inf. Model. 47(2), 488–508 (2007)CrossRefGoogle Scholar
  25. 25.
    Vahdat, A., NourAshrafoddin, N., Ghidary, S.: Mobile robot global localization using differential evolution and particle swarm optimization. In: Srinivasan, D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 1527–1534. IEEE Press, Singapore (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Lars Rosenbaum
    • 1
  • Andreas Jahn
    • 1
  • Andreas Zell
    • 1
  1. 1.Center for Bioinformatics (ZBIT)University of TuebingenTübingenGermany

Personalised recommendations