Complex Detection in Protein-Protein Interaction Networks: A Compact Overview for Researchers and Practitioners

  • Clara Pizzuti
  • Simona E. Rombo
  • Elena Marchiori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7246)

Abstract

The availability of large volumes of protein-protein interaction data has allowed the study of biological networks to unveil the complex structure and organization in the cell. It has been recognized by biologists that proteins interacting with each other often participate in the same biological processes, and that protein modules may be often associated with specific biological functions. Thus the detection of protein complexes is an important research problem in systems biology. In this review, recent graph-based approaches to clustering protein interaction networks are described and classified with respect to common peculiarities. The goal is that of providing a useful guide and reference for both computer scientists and biologists.

Keywords

Community Detection Protein Interaction Network Complex Detection Protein Interaction Data Dense Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamcsek, B., Palla, G., Farkas, I.J., Dernyi, I., Vicsek, T.: Cfinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22(8), 1021–1023 (2006)CrossRefGoogle Scholar
  2. 2.
    Aittokallio, B., Schwikowski, B.: Graph-based methods for analyzing networks in cell biology. Briefing in Bioinformatics 7(3), 243–255 (2006)CrossRefGoogle Scholar
  3. 3.
    Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7(207) (2006)Google Scholar
  4. 4.
    Arnau, V., Mars, S., Marìn, I.: Iterative cluster analysis of protein interaction data. Bioinformatics 21(3), 364–378 (2005)CrossRefGoogle Scholar
  5. 5.
    Asburner, S., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., et al.: Gene ontology: tool for the unification of biology. the gene ontology consortium. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  6. 6.
    Bader, G., Hogue, H.: An automated method for finding molecular complexes in large protein-protein interaction networks. BMC Bioinformatics 4(2) (2003)Google Scholar
  7. 7.
    Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phisical Review Letters 76(18), 3251–3254 (1996)CrossRefGoogle Scholar
  8. 8.
    Brohèe, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006)CrossRefGoogle Scholar
  9. 9.
    Ceol, A., et al.: Mint, the molecular interaction database: 2009 update. Nucleic Acids Research 38(Database issue), D532–D539 (2010)CrossRefGoogle Scholar
  10. 10.
    Cho, Y.-R., Hwang, W., Zhang, A.: Identification of overlapping functional modules in protein interaction networks: Information flow-based approach. In: Proc. of the Sixth Int. Conf. on Data Mining-Workshops, ICDMW 2006 (2006)Google Scholar
  11. 11.
    Chua, H.N., Ning, K., Sung, W.K., Leong, H.W., Wong, L.: Using indirect protein-protein interactions for protein complex prediction. In: Proceedings of Computational Systems Bioinformatics Conference (CSB 2007), pp. 97–109 (2007)Google Scholar
  12. 12.
    Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical Review Letters 94(16), 160–202 (2005)CrossRefGoogle Scholar
  13. 13.
    Enright, A.J., Dongen, S.V., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30(7), 1575–1584 (2002)CrossRefGoogle Scholar
  14. 14.
    Farutin, V., Robinson, K., Lightcap, E., Dancik, V., Ruttenberg, A., Letovsky, S., Pradines, J.: Edge-count probabilities for the identification of local protein communities and their organization. Proteins: Structure, Function, and Bioinformatics 62, 800–818 (2006)CrossRefGoogle Scholar
  15. 15.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.: Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics 25(7), 933–940 (2009)CrossRefGoogle Scholar
  17. 17.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. National. Academy of Science USA 99, 7821–7826 (2002)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: Clustering algorithm based graph connectivity. Nature 402, C47–C52 (1999)CrossRefGoogle Scholar
  19. 19.
    Hwang, W., Cho, Y.-R., Zhang, A., Ramanathan, M.: A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 1(24) (2006)Google Scholar
  20. 20.
    Jain, R.D.A.: Algorithms for Clustering Data. Prentice-Hall (1988)Google Scholar
  21. 21.
    Jancura, P., Marchiori, E.: Detecting high quality complexes in a PPI network by edge deletion and node expansion. In: CIBB (2011)Google Scholar
  22. 22.
    Jancura, P., Mavridou, E., Carrillo-De Santa Pau, E., Marchiori, E.: A methodology for detecting the orthology signal in a ppi network at a functional complex level. BMC Bioinformatics (2011) (accepted for publication)Google Scholar
  23. 23.
    Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–1111 (2010)CrossRefGoogle Scholar
  24. 24.
    King, A.D., Przulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)CrossRefGoogle Scholar
  25. 25.
    Kovacs, I.A., Palotai, R., Szalay, M.S., Csermely, P.: Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE 5(9) (2010)Google Scholar
  26. 26.
    Li, X.L., Foo, C.S., Ng, S.K.: Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. In: Proceedings of Computational Systems Bioinformatics Conference (CSB 2007), pp. 157–168 (2007)Google Scholar
  27. 27.
    Li, X.L., Wu, M., Kwoh, C.K., Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction network: a survey. BMC Bioinformatics 9 (2010)Google Scholar
  28. 28.
    Lin, C., Cho, Y., Hwang, W., Pei, P., Zhang, A.: Clustering methods in protein-protein interaction network. In: Knowledge Discovery in Bioinformatics: Techniques, Methods and Application. John Wiley & Sons, Inc., (2006)Google Scholar
  29. 29.
    Liu, H., Liu, J.: Clustering Protein Interaction Data Through Chaotic Genetic Algorithm. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A., Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 858–864. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Lubovac, Z., Gamalielsson, J., Olsson, B.: Combining functional and topological properties to identify core modules in protein interaction networks. Proteins: Structure, Function, and Bioinformatics 64, 948–959 (2006)CrossRefGoogle Scholar
  31. 31.
    Macropol, K., Can, T., Singh, A.: Rrw: repeated random walks on genome-scale protein networks for local cluster discovery. BMC Bioinformatics 10(1), 283 (2009)CrossRefGoogle Scholar
  32. 32.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Trans. on Comp. Biol. and Bioinf. 1(1), 24–45 (2004)CrossRefGoogle Scholar
  33. 33.
    Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  34. 34.
    Pavlopoulos, G.A., Secrier, M., Moschopoulos, C.N., Soldatos, T.G., Kossida, S., Aert, J., Schneider, R., Bagos, P.G.: Using graph theory to analyze biological networks. BioData Mining 4(10) (2011)Google Scholar
  35. 35.
    Pei, P., Zhang, A.: A two-step approach for clustering proteins based on protein interaction profiles. In: IEEE Int. Symposium on Bioinformatics and Bioengeneering (BIBE 2005), pp. 201–209 (2005)Google Scholar
  36. 36.
    Pereira, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins: Structure, Fuctions, and Bioinformatics (20), 49–57 (2004)Google Scholar
  37. 37.
    Pizzuti, C.: GA-Net: A Genetic Algorithm for Community Detection in Social Networks. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Pizzuti, C., Rombo, S.E.: PINCoC: A Co-clustering Based Approach to Analyze Protein-Protein Interaction Networks. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 821–830. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Pizzuti, C., Rombo, S.E.: Multi-functional protein clustering in ppi networks. In: Proc. of the 2nd Int. Conf. on Bioinf. Res. and Dev. (BIRD 2008), pp. 318–330 (2008)Google Scholar
  40. 40.
    Pizzuti, C., Rombo, S.E.: Discovering Protein Complexes in Protein Interaction Networks in Biological Data Mining in Protein Interaction Networks. In: Li, X.-L., Ng, S.-K. (eds.) IGI Global- Medical Inf. Science Ref. (2009)Google Scholar
  41. 41.
    Przulj, N.: Functional topology in a network of protein interactions. In: Jurisica, I., Wigle, D. (eds.) Knowledge Discovery in Proteomics. CRC Press (2005)Google Scholar
  42. 42.
    Ravaee, H., Masoudi-Nejad, A., Omidi, S., Moeini, A.: Improved immune genetic algorithm for clustering protein-protein interaction network. In: Proceedings of the 2010 IEEE International Conference on Bioinformatics and Bioengineering, BIBE 2010, pp. 174–179. IEEE Computer Society (2010)Google Scholar
  43. 43.
    Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. of the National Academy of Science 100(3), 1128–1133 (2003)CrossRefGoogle Scholar
  44. 44.
    Ruan, J., Zhang, W.: Identifying network communities with a high resolution. Physical Review E 77(1) (January 2008)Google Scholar
  45. 45.
    Samantha, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. Proc. of the National Academy of Science 100(22), 12579–12583 (2003)CrossRefGoogle Scholar
  46. 46.
    Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm. arXiv:0711.0491, 2007 (2007)Google Scholar
  47. 47.
    Tornw, S., Mewes, H.W.: Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research 31(21), 6283–6289 (2003)CrossRefGoogle Scholar
  48. 48.
    von Mering, D., Krause, C., et al.: Comparative assessment of a large-scale data sets of protein-protein interactions. Nature 31, 399–403 (2002)CrossRefGoogle Scholar
  49. 49.
    Wang, J., Li, M., Deng, Y., Pan, Y.: Recent advances in clustering methods for protein interaction networks. BMC Genomics 11(S10) (2010)Google Scholar
  50. 50.
    Zhang, S., Chen, H., Liu, K., Sun, Z.: Inferring protein function by domain context similarities in protein-protein interaction networks. BMC Bioinformatics 10, 395 (2009)CrossRefGoogle Scholar
  51. 51.
    Zhao, Y., Levina, E., Zhu, J.: Community extraction for social networks. Proceedings of the National Academy of Sciences 108(18), 7321–7326 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Clara Pizzuti
    • 1
  • Simona E. Rombo
    • 1
    • 2
  • Elena Marchiori
    • 3
  1. 1.Institute for High Performance Computing and NetworkingNational Research Council of Italy, CNR-ICARRendeItaly
  2. 2.DEISUniversitá della CalabriaRendeItaly
  3. 3.Department of Computer ScienceRadboud UniversityNijmegenThe Netherlands

Personalised recommendations