Skip to main content

Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm

  • Conference paper
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO 2012)

Abstract

Phylogenetic Inference is considered as one of the most important research topics in the field of Bioinformatics. A variety of methods based on different optimality measures has been proposed in order to build and evaluate the trees which describe the evolution of species. A major problem that arises with this kind of techniques is the possibility of inferring discordant topologies from a same dataset. Another question to be resolved is how to manage the tree search process. As the space of possible topologies increases exponentially with the number of species in the input dataset, exhaustive methods cannot be applied. In this paper we propose a multiobjective adaptation of a well-known Swarm Intelligence algorithm, the Artificial Bee Colony, to reconstruct phylogenetic trees according to two criteria: maximum parsimony and maximum likelihood. Our approach shows a significant improvement in the quality of the inferred trees compared to other multiobjective proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2004); ISBN: 0-87893-177-5

    Google Scholar 

  2. Handl, J., Kell, D., Knowles, J.: Multiobjective Optimization in Computational Biology and Bioinformatics. IEEE Transactions on Computational Biology and Bioinformatics 4(2), 289–292 (2006)

    Google Scholar 

  3. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department (2005)

    Google Scholar 

  4. Karaboga, D., Basturk, B.: A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. Journal of Global Optimization 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogenetic Inference. Molecular Systematics, vol. 2, pp. 407–514. Sinauer Associates, Sunderland (1996)

    Google Scholar 

  6. Matsuda, H.: Construction of phylogenetic trees from amino acid sequences using a genetic algorithm. In: Proceedings of Genome Informatics Workshop, pp. 19–28. Universal Academy Press (1995)

    Google Scholar 

  7. Lewis, P.O.: A Genetic Algorithm for Maximum-Likelihood Phylogeny Inference Using Nucleotide Sequence Data. Molecular Biology and Evolution 15(3), 277–283 (1998)

    Article  Google Scholar 

  8. Congdon, C.: GAPHYL: An evolutionary algorithms approach for the study of natural evolution. In: Genetic and Evolutionary Computation Conference, pp. 1057–1064 (2002)

    Google Scholar 

  9. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons, Chichester (2001); ISBN: 978-0-471-87339-6

    MATH  Google Scholar 

  10. Coelho, G.P., da Silva, A.E.A., Von Zuben, F.J.: Evolving Phylogenetic Trees: A Multiobjective Approach. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 113–125. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Cancino, W., Delbem, A.C.B.: A Multi-objective Evolutionary Approach for Phylogenetic Inference. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 428–442. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Poladian, L., Jermiin, L.: Multi-Objective Evolutionary Algorithms and Phylogenetic Inference with Multiple Data Sets. Soft Computing 10(4), 359–368 (2006)

    Article  Google Scholar 

  13. Fitch, W.: Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology. Systematic Zoology 20(4), 406–416 (1972)

    Article  Google Scholar 

  14. Felsenstein, J.: Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. Journal of Molecular Evolution 17, 368–376 (1981)

    Article  Google Scholar 

  15. Felsenstein, J.: PHYLIP (Phylogeny Inference Package) (2000), http://evolution.genetics.washington.edu/phylip.html

  16. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel, O.: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59(3), 307–321 (2010)

    Article  Google Scholar 

  17. Dutheil, J., Gaillard, S., Bazin, E., Glémin, S., Ranwez, V., Galtier, N., Belkhir, K.: Bio++: a set of C++ libraries for sequence analysis, phylogenetics, molecular evolution and population genetics. BMC Bioinformatics 7, 188 (2006)

    Article  Google Scholar 

  18. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C, The Art of Scientific Computing. Cambdrige University Press (1992); ISBN: 0–521–43108–5

    Google Scholar 

  19. Weicker, N., Szabo, G., Weicker, K., Widmayer, P.: Evolutionary multiobjective optimization for base station transmitter placement with frequency assignment. IEEE Transactions on Evolutionary Computation 7(2), 189–203 (2003)

    Article  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  21. Shimodaira, H., Hasegawa, M.: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116 (1999)

    Article  Google Scholar 

  22. Cancino, W., Delbem, A.C.B.: A Multi-Criterion Evolutionary Approach Applied to Phylogenetic Reconstruction. In: Korosec, P. (ed.) New Achievements in Evolutionary Computation, pp. 135–156, InTech (2010); ISBN: 978-953-307-053-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santander-Jiménez, S., Vega-Rodríguez, M.A., Gómez-Pulido, J.A., Sánchez-Pérez, J.M. (2012). Inferring Phylogenetic Trees Using a Multiobjective Artificial Bee Colony Algorithm. In: Giacobini, M., Vanneschi, L., Bush, W.S. (eds) Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. EvoBIO 2012. Lecture Notes in Computer Science, vol 7246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29066-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29066-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29065-7

  • Online ISBN: 978-3-642-29066-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics