Interlinking Geospatial Information in the Web of Data

  • Luis M. Vilches-Blázquez
  • Víctor Saquicela
  • Oscar Corcho
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


There is an increasing presence of geospatial datasets in the Linked Open Data cloud. However, these datasets are published like data silos and the value of the Web of Data depends, among other properties, on the amount and quality of links between data sources. One of the most overlooked problems to date in the linking process is to ensure that two different resources (identified with URIs) are actually referring to the same physical thing, that is, the co-reference problem. In this paper we present a co-reference resolution approach that is composed of a set of heuristics for interlinking geospatial Linked Data. We have used these heuristics to connect resources from and DBpedia.


Geospatial linked Data Links Co-reference Heuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by the R&D project España Virtual (CENIT2008-1030), funded by Centro Nacional de Información Geográfica and CDTI under the R&D programme Ingenio 2010.


  1. Auer, S., Lehmann, J. and Hellmann, S. (2009) “LinkedGeoData - adding a spatial dimension to the web of data,” in Proc. of 8th ISWC.Google Scholar
  2. Ayers, D. and Völkel, M. (2008) Cool URIs for the semantic web. Interest Group Note 20080331, W3C. Last date accessed: 02.2012.
  3. Bechofer, S., Van Harmelen, F., Hendler, J., Horrocks, I., Mcguiness, D.L., Schneider, P.F. and Stein, L.A. (2004) OWL Web Ontology Language Reference, Technical Report, W3C, Last date accessed: 12.2011.
  4. Beeri, C., Kanza, Y., Safra, E. and Sagiv, Y. (2004) Object fusion in geographic information systems. Proceedings of the Thirtieth international conference on VLDB, vol. 30, 816 – 827. Toronto, Canada.Google Scholar
  5. Berners-Lee, T. (2006) Linked Data - Design Issues. W3C. signIssues/LinkedData.html. Last date accessed: 12.2011.
  6. Bizer, C., Cyganiak, R. and Heath, T. (2007) How to publish linked data on the web. Last date accessed: 02.2012.
  7. Bleiholder, J. and Naumann, F. (2008) Data fusion. ACM Computing Surveys 41(1).Google Scholar
  8. Corcho O. (2005) A layered declarative approach to ontology translation with knowledge preservation. Frontiers in AI and its Applications. Dissertations in AI. IOS Press.Google Scholar
  9. Cyrille, A., Ngomo, N. and Auer, S. (2011) LIMES – A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data. Proceedings of IJCAI.Google Scholar
  10. Ding, L., Shinavier, J., Finin, T. and McGuinness, D.L. (2010) owl:sameAs and Linked Data: An Empirical Study. In: Second Web Science Conference, Raleigh, North Carolina.Google Scholar
  11. Elmagarmid, A.K., Ipeirotis, P.G. and Verykios, V.S. (2007) Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19(1) 1-16.Google Scholar
  12. Euzenat, J. (2001) Towards a principled approach to semantic interoperability. In: Gómez-Pérez A., Grüninger M, Stuckenschmidt H, Uschold M. (eds.) IJCAI 2001 Workshop on Ontology and Information Sharing, Seattle, Washington.Google Scholar
  13. Fellegi, I.P. and Sunter, A.B. (1969) “A Theory for Record Linkage” Journal of the American Statistical Association, 40, 1183-1210.Google Scholar
  14. Glaser, H., Jaffri, A. and Millard, I. (2009a) Managing Co-reference on the Semantic Web. In: WWW2009 Workshop: Linked Data on the Web (LDOW2009), 20 April 2009, Madrid, Spain.Google Scholar
  15. Glaser, H., Millard, I., Sung, W.-K., Lee, S., Kim, P. and You, B.-J. (2009b) Research on Linked Data and Co-reference Resolution. In: International Conference on Dublin Core and Metadata Applications, Seoul, Korea.Google Scholar
  16. Goodwin, J., Dolbear, C. and Hart, G. (2009) “Geographical Linked Data: The Administrative Geography of Great Britain on the Semantic Web,” Transaction in GIS, vol. 12, no. 1, pp. 19–30.Google Scholar
  17. Hahmann, S. and Burghard, D. (2010) Connecting LinkedGeoData and Geonames in the Spatial Semantic Web. In: Proc. of GIScience 2010 Extended Abstracts, Purves, R. and Weibel, R. (eds.), pp. 28–34. Zurich, Switzerland.Google Scholar
  18. Halpin, H. and Hayes, P.J. (2010) When owl:sameAs isn’t the same: An analysis of identity links on the semantic web. In: International Workshop on Linked Data on the Web, Raleigh, North Carolina.Google Scholar
  19. Heath, T. and Bizer, C. (2011) Linked Data: Evolving the Web into a Global Data Space, vol. 1. Morgan & Claypool.Google Scholar
  20. Hernández, M.A. and Stolfo, S.J. (1998) Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery 2(1) 9-37.Google Scholar
  21. Herzog, T.N., Scheuren, F.J. and Winkler, W.E. (2007) Data Quality and Record Linkage Techniques. Springer.Google Scholar
  22. Jaffri, A., Glaser, H. and Millard, I. (2007) URI Identity Management for Semantic Web Data Integration and Linkage. In Proceedings of the Workshop on Scalable Semantic Web Systems (Vilamoura, Portugal) Springer.Google Scholar
  23. Jaffri, A., Glaser, H. and Millard, I. (2008) URI Disambiguation in the Context of Linked Data, Linked Data on the Web Workshop at the 17th International World Wide Web Conference, Beijing, China.Google Scholar
  24. Köpcke, H. and Rahm, E. (2009) Frameworks for entity matching: A comparison, Data & Knowledge Engineering. Volume 69 (2), pages 197-210.Google Scholar
  25. Martins, B. (2011) A Supervised Machine Learning Approach for Duplicate Detection over Gazetteer Records, Proceedings of the 4th International Conference on Geospatial Semantics. Brest, France.Google Scholar
  26. Morris, A., Velegraki, Y. and Bouquet, P. (2008) Entity Identification on the Semantic Web. Proceedings of the 5th Workshop on Semantic Web Applications and Perspectives (SWAP2008), Roma (Italy).Google Scholar
  27. Nikolov, A., Uren, V.S., Motta, E. and De Roeck, A.N. (2008) Refining Instance Coreferencing Results Using Belief Propagation. In Proceedings of ASWC’2008. pp. 405-419.Google Scholar
  28. Salvadores, M., Correndo, G., Rodriguez-Castro, B., Gibbins, N., Darlington, J. and Shadbolt, N. (2009). LinksB2N: Automatic Data Integration for the Semantic Web. In: Int. Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2009).Google Scholar
  29. Samal, A., Seth, S. and Cueto, K. (2004) A feature-based approach to conflation of geospatial sources. Int. Journal of Geographical Information Science 18.Google Scholar
  30. Schultz, A., Matteini, A., Isele, R., Bizer, C. and Becker, C. (2011) LDIF - Linked Data Integration Framework. 2nd International Workshop on Consuming Linked Data, Bonn, Germany.Google Scholar
  31. Schwering, A. (2008) Approaches to semantic similarity measurement for geo-spatial data: A survey. Transactions in GIS 12(1), 5-29.Google Scholar
  32. Sehgal, V., Getoor, L. and Viechnicki, P.D. (2006) Entity resolution in geospatial data integration. Proceedings of the 14th annual ACM international symposium on advances in geographic information systems. 83-90. Arlington, Virginia, USA.Google Scholar
  33. Vilches-Blázquez, L.M., Villazón-Terrazas, B., Saquicela, V., de Leon, A., Corcho, O. and Gómez-Pérez, A. (2010) GeoLinked Data and INSPIRE through an Application Case. In proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM New York, NY, pp. 446-449. USA.Google Scholar
  34. Volz, J., Bizer, C., Gaedke, M. and Kobilarov, G. (2009) Silk – A Link Discovery Framework for the Web of Data. 2nd Workshop about Linked Data on the Web (LDOW2009), Madrid, Spain.Google Scholar
  35. Zheng, Y., Fen, X., Xie, X., Peng, S. and Fu, J. (2010) Detecting nearly duplicated records in location datasets. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luis M. Vilches-Blázquez
    • 1
  • Víctor Saquicela
    • 1
  • Oscar Corcho
    • 1
  1. 1.Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations