Advertisement

A New Method for Computing the Drainage Network Based on Raising the Level of an Ocean Surrounding the Terrain

  • Salles V. G. Magalhães
  • Marcus V. A. Andrade
  • W. Randolph Franklin
  • Guilherme C. Pena
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

We present a new and faster internal memory method to compute the drainage network, that is, the flow direction and accumulation on terrains represented by raster elevation matrix. The main idea is to surround the terrain by water (as an island) and then to raise the outside water level step by step, with depressions filled when the water reaches their boundary. This process avoids the very time-consuming depression filling step used by most of the methods to compute flow routing, that is, the flow direction and accumulated flow. The execution time of our method is very fast, and linear in the terrain size. Tests have shown that our method can process large terrains more than 100 times faster than other recent methods.

Keywords

Hydrology Drainage network Flow routing Flow accumulation Terrain processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arge, L., Chase, J.S., Halpin, P., Toma, L., Vitter, J.S., Urban, D., Wickremesinghe, R. (2003) Flow computation on massive grid terrains, GEOINFORMATICA 7.Google Scholar
  2. Danner, A., Agarwal, P.K., Yi, K., Arge, L. (2007) Terrastream: From elevation data to watershed hierarchies, in: Proc. ACM Sympos. on Advances in Geographic Information Systems, pp. 212-219.Google Scholar
  3. Ehlschlaeger, C. (1989) Using the A* search algorithm to develop hydrologic models from digital elevation data, in: International Geographic Information Systems (IGIS) Symposium. (Baltimore, MD, 18-19 March 1989), pp. 275-281.Google Scholar
  4. Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf, D. (2007) The Shuttle Radar Topography Mission, Reviews of Geophysics 45 RG2004+.Google Scholar
  5. GRASS (2011) Geographic Resources Analysis Support System (GRASS GIS) Software. Open Source Geospatial Foundation, http://grass.osgeo.org (accessed 11/10/2011).
  6. Grimaldi, S., Nardi, F., Benedetto, F.D., Istanbulluoglu, E., Bras, R.L. (2007) A physically-based method for removing pits in digital elevation models, Advances in Water Resources 30, pp. 2151-2158.Google Scholar
  7. Jakowatz Jr.., C.V., Wahl, D.E., Eichel, P.H., Ghiglia, D.C., Thompson, P.A. (1996) Spotlight-Mode Synthetic Aperature Radar: A Signal Processing Approach, Kluwer Academic Publishers, Boston, Massachusetts.Google Scholar
  8. Metz, M., Mitasova, H., Harmon, R.S. (2011) Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrology and Earth System Sciences 15, pp. 667-678.Google Scholar
  9. O’Callaghan, J.F., Mark, D.M. (1984) The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing 28, pp. 323-344.Google Scholar
  10. Planchon, O., Darboux, F. (2002) A fast, simple and versatile algorithm to fill the depressions of digital elevation models, Catena 46, pp. 159-176.Google Scholar
  11. Santini, M., Grimaldi, S., Nardi, F., Petroselli, A., Rulli, M.C. (2009) Pre-processing algorithms and landslide modelling on remotely sensed dems, Geomorphology 113, pp. 110-125.Google Scholar
  12. SRTM (2011) SRTM Topography Documentation, http://dds.cr.usgs.gov/srtm/version2 1/Documentation/(accessed 11/10/2011).
  13. Tarboton, D.G. (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research 33, pp. 309-319.Google Scholar
  14. Wang, L., Liu, H. (2006) An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling, International Journal of Geographical Information Science 20, pp. 193-213.Google Scholar
  15. Yong-he, L., Wan-Chang, Z., Jing-Wen, X. (2009) Another fast and simple dem depression-filling algorithm based on a priority queue structure, Atmospheric and Oceanic Science Letters 2.Google Scholar
  16. Zhu, Q., Tian, Y., Zhao, J. (2006) An efficient depression processing algorithm for hydrologic analysis, Comput. Geosci. 32, pp. 615-623.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Salles V. G. Magalhães
    • 1
  • Marcus V. A. Andrade
    • 1
  • W. Randolph Franklin
    • 2
  • Guilherme C. Pena
    • 1
  1. 1.Department of Informatics (DPI)University Federal de ViçosaViçosaBrazil
  2. 2.ECSERensselaer Polytechnic InstituteTroyUSA

Personalised recommendations